Oscillzitlons

Oscillation

Oscillation is a repetitive or cyclical variation of a quantity. Vibration is subset
of oscillation involving mechanical systems.

Restoring Force

An oscillating body must have a restoring force that will always try to bring it
back to its equilibrium position whenever it is displaced from that position.

Damped or Undamped

A damped oscillator is one which experiences resistive forces during
oscillation while an undamped oscillator does not. The effect of damping is
that the oscillations will die out over time.

Free or Forced

A free oscillator is under the influence of a restoring force and may be
damped or undamped. No other forces act on the oscillator. A forced
oscillator is continuously being driven by an external periodic force in
addition to the restoring force.

Harmonic or Anharmonic

A harmonic oscillator is one whose restoring force is proportional to the
displacement from its equilibrium. If the restoring force is not proportional to
the displacement, then it is anharmonic.

Examples of Free Oscillations

A pendulum bob swinging to and fro has a cyclical variation of position.
A fluctuating electric voltage in our power supply.
The vibration of a plucked guitar string.

Definition

SHM is an oscillatory motion that is free, harmonic and undamped. The
resulting motion is characterised and defined as follows:

SHM is an oscillatory or periodic motion whereby the acceleration
is proportional to the displacement from the equilibrium position
and always towards the equilibrium position.

Mathematically, the definition is:

a=-w’X - (Eq. 1.1)

where a is the acceleration, x is the displacement and o is a
constant depending on the characteristics of the system.

The negative sign reflects the opposite directions of a & Xx.

Example - Mass-spring Oscillator

equilibrium position Assume the spring can exert

1 both pushing and pulling forces

! frictionless and this elastic force is given by

(mmmmm m surfaces Hooke’'s law F. = kx

(magnitudes) when the mass

has a displacement x from the
equilibrium position.

Fig. 2.1

Simple harmonic
motion is a
periodic motion
whereby the
acceleration is
proportional and
opposite to the
displacement
from the
equilibrium
position.
a=-w’X

or just
magnitudes:

a= &'x
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When the mass is displaced to the right, the spring pulls it to the left. When
the mass is displaced to the left, the spring pushes it to the right. Thus the
directions of the elastic force and the displacement are always opposite and

we can represent the relative directions by writing Ife =-kx . The elastic
force always tries to restore the mass back to the equilibrium position. Hence
the restoring force for this system is the elastic force.

Vertically, the normal force cancels the weight. Horizontally the elastic force
is the only force so F, = F,_, . Therefore —kx =ma and it can be re-written as

a=-w’X where o° = h In other words, the mass-spring set-up fulfils the
m

defining condition for SHM and so we expect that when the mass is given an
initial displacement and let go, the subsequent oscillatory motion would be
classified as SHM.

Example - Swinging Pendulum

Only 2 forces on bob - T & mg

Length L T =mg cosd

Fret =mg sing --- (A)

Tension X, is bob’s horizontal displacement.

|X,| =Lsin@ - (B)

Replacing F, by ma in (A) and
5 using sin@ = x,/L from (B):

h
equilibrium ¢ ma = ma %
position mg cosé L
weight
. a= (%jx where o® = (%j
Fig. 2.2 mg sing

Hence a = X again where o = g/L. When @ gets increasingly smaller, the
bob’s actual displacement X, would become increasingly closer to the

horizontal displacement X, (see Fig. 2.2). The direction of a is given by

direction of mg sin@ component which is opposite to that of displacement
when @ is small. Thus the smaller the angle 6, the closer the pendulum’s
motion matches SHM.

In this case, the restoring force is provided by a component of the weight. In
general, any oscillator whose restoring force or net force or acceleration can
be shown to be directly proportional and opposite to the displacement from
the equilibrium position must be a simple harmonic oscillator.

We can also see that «° = k/im and & = g/L are the constants of
proportionality in the defining equation a = -»”X . In general o is dependent
on quantities which are characteristics of the set-ups like spring constant Kk,
mass m, gravitational field strength g and length L.

2

o - , X _
The SHM equation a=-w’X can be written as ?jtz =-w’X . The 2"

equation is known as a differential equation which like a quadratic equation
has solutions satisfying the equation. In this case, the solutions are
sinusoidal functions like X = X, sin(wt) and X = X, cos(wt) where -ve and +ve
values are opposite in directions. Solving differential equations is not in the
syllabus so we will look at other ways of arriving at these solutions.

Any motion that

fits the equation

a=-w’X is

SHM, i.e.

laaxx

2 a opposite to
X

Different set-ups
involve different
forces providing
the restoring
force leading to
® dependent on
different system
properties.
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X -t Plot

If a pen is attached to an oscillating mass and its motion is recorded on a
moving strip of paper, the resulting plot shows how the displacement varies
with time:

paper
strip
pulled at %
constant
speed
oscillating
bob and
pen Fig.3.1

It turns out that the x —t plot will be sinusoidal i.e. sine and all shifted sine
plots. The plot will be described by x = x, sin(wt) if the pen is only brought

to touch the paper when the bob is passing the equilibrium position on its
way up like in Fig. 3.1 and upward direction is chosen to be positive.

If the pen only starts plotting
when it is at its highest point
and going downwards, plot will
be X =X, cos(wt):

A
Havanv,

Fig. 3.2 Fig. 3.3

If the pen starts plotting when it
is slightly above the equilibrium
position and going upwards, plot
will be X =X, sin(at + ¢) :

v-t & a-t Plots
From the above x —t plots, it is easy to obtain the corresponding v —t and
a—t plotsas v =dx/dt and a=d?x/dt?:

V = —X,msin(wt) V = X,0CoS(at + @)
i ﬂ /\ N NVANYA
N

Fig.3.4 | | Fig.35

<
<

—~+ Vv

3 = —X,® cos(cot) 3

NN IVANS IV VAN
Navanvatillvanvass

Fig. 3.6 Fig. 3.7

a =X, sin(at + @)

v

-+ Vv

The maximum magnitude on the vertical axis is called amplitude. Hence the
amplitude of X —t plot is x,, the amplitude of v —t plotis v, (= @ Xo) and the
amplitude of a—t plotis a, (= @ Xo = @Vy).

When an
oscillator fulfils
the conditions for
SHM, the
resulting
variation of
displacement
with time is
sinusoidal. In
fact, the reverse
is also true i.e. a
sinusoidal X —t
implies SHM.

If displacement

amplitude = x,

then

1 velocity
amplitude
Vo = @ Xg

2 acceleration
amplitude
g = 602 Xo
= aNg
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Phase Angles and Phase Difference

Phase Angle

In sinusoidal functions, the quantity «t or (at + ¢) is a phase angle measured
in radians or degrees. The Moon goes through a cycle of different phases in
28 days. Similarly, a simple harmonic oscillator goes through a cycle of
different displacements and velocities as the phase angle increases with t.

In the mathematical sinusoidal functions - sing or cosé - as 0 changes by 27
radians or 360°, the functions’ values go through one cycle of change. These
functions only operate on angles. Therefore sin(2 s) or cos(10 cm) are
meaningless. In order to have the functions vary with time t instead of angle
6, we need to ‘map’ or ‘transform’ the t variable to the ¢ variable using a
conversion factor just like an exchange rate from one currency to another.
This is done based on the following:

1. @should be proportionaltot = 6=ct
2. one cycle in angle is 2z while one cycle in time is a period T
=2z=CT

Subc = %I_—ﬂ from (2) into (1)

2

. .2
0= ?t where conversion factor c is ?ﬂ

Earlier, the conversion factor was also found experimentally to be @ which
depends on the properties of the oscillator system. Frequency f is defined to
be 1/T. In this case @ = 24T is called angular frequency (note that it is called
angular velocity in Circular Motion)

Phase Difference

In y, =sin(@+90°), when @8 is zero, y,’s value is that of y, =sin(d) when

6= 90° and as @increases, the value of y, will take on values of y; from 90°
onwards i.e. the plot of y, is obtained by shifting y; to the left by 90°. After
shifting, the resulting plot is equivalent to y = cos(d) as shown in Fig. 3.8.

y, =sin(d) y, = sin(é + 90°)
y
1/ P

>

L ‘L 90° 180 270° _-360° 0

Fig. 3.8

In general, if angle ¢ is added to the phase angle of a sinusoidal function, the
effect is to shift the function to the left by ¢ on the horizontal axis (minus sign
corresponds to shifting to the right).

Comparing Yy, =cos(d) =sin(d+90°) and y, =sin(d) we can say that the
phase angle ofy, leads the phase angle of y, by 90°. When we are not

interested in which phase angle is leading then we will just look at the
absolute value of the difference in phase angles or phase difference in short.

In this case, the phase difference ¢ is 90°.

Phase difference ¢ is thus the absolute value of the difference in phase
angles of 2 sinusoidal functions and it can be found by looking at the amount
of relative shift in terms of angle. In the context of 2 oscillators, ¢ reflects the
difference in their positions and motions(velocity and acceleration).

The phase angle
of a sinusoidal
function can be
written in terms
of variable
quantities which
are not angles
by using
appropriate
conversion
factors.

The conversion
. 2

factoris o = Z
T

and called the
angular
frequency.

Phase difference
¢ is the absolute
value of the
difference in
phase angles of
2 sinusoidal
functions, found
by looking at the
amount of
relative shift in
terms of angle.

¢ reflects the
difference in

positions and
motions of 2

oscillators.
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If the horizontal axis is t instead of 6, the relative shift in terms of angle can
still be easily found by remembering that T corresponds to 360° or 2. In Fig.
3.9, the relative shift is T/8 and so ¢ must be 360°/8 or 45°.

y =sin(wt) y =sin(ot —¢)

A

J/T/S T/4 T/2 /2 T
-1
Fig. 3.9

To arrive at a formula, use the fact that phase angle is related to t by

0= ?I_—”t , thus difference in phase angles or ¢ = A0 = ?I_—”At .

—~+Vv

a-x and v-Xx Plots

aA
Based on the relation a =-w®X, the +aPxy +
a—X plot is as shown in Fig. 3.10
where +/- signs indicate directions. ' +?(0 >
—Xo X
2
As shown in previous section, the Fig. 3.10 @Xo T

general x —t function for SHM is
X =X,sin(at+¢)  ----(1)
then Vv =x,wcos(at+¢) ----(2)
V = tX,0\1-sin’(ot + ¢) as sin’(wt + @) +cos’(wt + @) =1

V= J_ra)\/xj — X2 sin®(ot + @)

vV = ia)afxg -x?

We have eliminated the t variable from equations (1) & (2) to arrive at a
formula relating variables v and X instead.

using x> = xZ sin*(wt +¢) from (1)

Using V = +w\/x2 — X , we can then get V — X plot as shown in Fig. 3.11.

VA +ve to the right

X ® ®@ - 0

—X'El

©) - _
v -ve & X +ve

N
_XO\\ @/m

—Xo ® <V_ @ @ k

b9 4

Fig. 3.11 B._X .
For X = X, cos(wt) the plot goes from
O->@->0-@->0 (Fig. 3.11 & 3.12). ) v @ )

For X =-x,cos(wt) the plot goes [F— k
from @ >®—->0->0-50.

For X =X, sin(at) the plot goes from N
®->0-50-50-9@. ® ®.— O

For X = —x, sin(wt) the plot goes from - _
0-50-50-50-50.

Phase difference
due to At is given

2r
b =—At or
y ¢ =
¢:360 At

T

The variation of
v with X is

V =t Xg —x?
‘t’ reflects the
fact that for each
X there are two
possible v
directions as
shown in Fig.
3.11.
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Uniform Circular Motion and SHM

Shadow moves in SHM light
horizontally as peg on turntable screen beam
undergoes uniform circular motion. 1
hadow .
shado light XT
beam
middle
’ position
screen 1
Side view Fig. 3.13 Plan view

The shadow’s displacement from the middle position is x = r sin(«t) which is
sinusoidal and thus the shadow’s motion is SHM.

E -t Plots

Plotting starts at x = 0 Plotting starts at x = £Xg

54 Eiot 54 Erot
5 o ~—7 KE & ;T 7 _PE
AR 7N Tl F T
/ \ iy .\// PE v Vol KE
’ \y N\, L s .
0 T/2 T t 0 T/2 T t
Fig. 4.1a Fig. 4.1b

Note that oscillation period for displacement is T but for KE and PE is T/2.

Why is the total energy constant? A simple harmonic oscillator by definition
can only have a restoring force and no resistive forces or other external
forces. Hence no energy is lost by the oscillator due to resistive forces and
no work is done on it by other external forces. However E,, = KE + PE is
continuously switching between totally kinetic and totally potential.

1

E, =KE =Emv§:%m(a)xo)2

tot max

To see how KE and PE vary with t, write v in time varying form:

oscillator at x =0 whent=10 oscillator at £xo whent =0

V = X, Cc0S(wt) V = X,0sin(wt)

KE, = Love - lm[xoa)cos(a)t)]2 KE, = v = 1m[xoa)sin(wt)]2
2 2 2 2
KE, = %mxéa)z cos?(wt) KE, = %mxgmz sin’(wt)

1
PE, :Em—Emv2
_ 1 2 2_1 2 2 2
PE, _meoa) meoa) cos®(awt)

— 1 2 2 2
PE, —meoa) (1—cos a)t)

1 .
PE, = meéa)z sin® ot

1
PE, =E,, —Emv2
_ 1 2 2_1 2 2 qin2
PE, _meoa) meoa) sin“(wt)

1l ., 2
PE, = >mx;o (1-sin” o)

1
PE, = meng cos’ wt

The projection or
shadow of an
object in uniform
circular motion is
in simple
harmonic motion.

E-t plots for SHM
show:

1 to and fro
switching
between KE
and PE.

2 there are 2
cycles of
variation in KE
and PE for one
cycle of
variation in
displacement.

3 total energy is
constant as
resistive forces
are absent.

To express KE in
terms of t, use
the v-t
expression in

KE = amv°.

To express PE in
terms of t, use

1 Etot = KEmax
2 PE = Ei — KE

]
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E -Xx Plots

To see how KE and PE vary with x, write v in terms of x.

Use V = +my|x2 — X as derived earlier.

KE, = 1mV2 = lma)z(xg -x%) Energy Etot
2 2 A
and - PE
/
PE, =E,, I
2
PE, = 1mxga)2 _lmwz(xg -x%) KE
2 2 >
Xo ¥y
PQ:%m#f X

When resistive forces such as friction and viscous force are allowed to act
on a simple harmonic oscillator we say that it is being damped. The effect of
damping is negative work done on the oscillator leading to energy loss. The
oscillator’'s motion is then no longer simple harmonic. However, resistive
forces are mostly impossible to remove completely, so if they are small we
can still treat the oscillator as close to simple harmonic.

Damping is classified into three categories.

Under/light damping

X A
. exponential

Critical damping

Over/heavy damping

X A

AR
Mo

\/\/

Fig. 5.1a

v

Fig. 5.1b

Fig. 5.1c

Oscillations have
gradually decreasing
amplitude. Period
increases with
increased damping.

Displaced oscillator
returns to equilibrium
in shortest possible
time with no
oscillation.

Displaced oscillator
returns to equilibrium
longer than in critical

damping with no
oscillation.

Damping is less than
critical.

A precise amount of
damping marks the
separation of light and
heavy damping.

Damping is greater
than critical.

Example

card

Oscillator with card
attached encounters
non-negligible air
resistance.

Example

Car’s suspension
system fitted with
damper to minimise
oscillations yet not
over damped till too
stiff for comfort. Critical
damping is used in
machines, buildings,
bridges to remove
vibrations.

Example

o

Auto-closing door with
damper set to heavy
damping so that door

closes gently.

To express KE in
terms of x, use

V =t x5 —x?

in KE = Yamv?.

To express PE in
terms of x, use
PE = Et — KE

A damped
oscillator is one
which
experiences
resistive forces
leading to loss of
energy as heat.

Three kinds of

damping:

1 Under
damping
where
oscillations
have
exponential
drop in
amplitude.

2 Critical
damping
where initial
displacement
decreases to
zero in
shortest
possible time.

3 Over damping
where
excessive
resistive force
causes
displacement
to drop to zero
in longer time
than for critical
damping.
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Natural Frequency

Every simple harmonic oscillator when disturbed will oscillate at a
characteristic frequency known as natural frequency. For example, the mass

: k . . .
spring system has o = and since o = 2f, its natural frequency is

f= Zi fh where k and m are the spring constant and mass respectively.
7z \m

Different systems thus have different characteristic natural frequencies.

Forced Oscillations & Resonance

Forced oscillations refer to the application of a periodic driving force to force
an oscillator to oscillate at the frequency of the driving force. If a simple
harmonic oscillator is subjected to an external periodic driving force, after a
period of erratic motion it will eventually settle into a steady oscillation at the
frequency of the driving force.

restoring force  periodic
to equilibrium force
== RS

...... it
ROsOoIOu]

Fig. 6.1

Using the set-up in Fig. 6.1, the frequency of the driving force can be varied
to investigate the oscillations at different frequencies. For this simple
harmonic oscillator with a little damping, a series of driving frequencies fp are
chosen and for each fp the steady state amplitude X, of the forced oscillation

is measured and plotted. The resulting curve looks like ‘underdamped 1’ (Fig.

6.2) with a peak very close to the natural frequency fy.

Driven oscillator’s
amplitude xq
A

no damping

underdamped 1

underdamped 2

amplitude

of driver increased

damping

[
»

natural driving
Fig. 6.2 frequency fy frequency fp

To make sense of the curve, consider a child on a

swing which is approximately a simple harmonic

oscillator. After the first push, she will move forward

and back with the natural frequency. If you push again "
just when she is swinging forward, you would do !
positive work and impart energy to her thus increasing
her amplitude x,. However if you push when she is
swinging backwards you would do negative work and Fig. 6.3
remove energy thus decreasing her amplitude.

push
—

Natural
frequency of a
simple harmonic
oscillator is a
characteristic
frequency of
oscillation
dependent on
system’s
properties.

Forced
oscillations refer
to the application
of a periodic
driving force to
force an
oscillator to
oscillate at the
frequency of the
driving force.

The variation of
steady amplitude
with driving
frequency is
shown in Fig. 6.2.
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It is easy to see that if your frequency of pushing matches the natural
frequency the amplitude xo will get bigger and bigger but a limit will be
reached. Maximum amplitude Xq max Will be reached because damping will do
more negative work with greater amplitude.

Now imagine that the frequency of pushing is halved i.e. one push for every
2 swings. There is now less energy per swing imparted to the child while the
resistive forces are still continuously taking energy out of each swing. The
final steady amplitude will be smaller than X max.

Next imagine triple the original frequency i.e. 3 pushes per swing. Now some
of the pushes will take place during the backward swing and so the final
steady amplitude will again be smaller than Xg max.

The driving force in the mass-spring system is actually more complicated
than the pushes in the swing scenario. In general, when the driving
frequency fp doesn’t match the natural frequency fy, there will be times when
the push and pull of the driver would end up impeding rather than helping
the oscillation. Hence the maximum steady amplitude will only be achieved
when driving frequency is near the natural frequency.

In theory, when there is no damping and fp = fy the amplitude can go to
infinity since there is only input of energy but no loss from the oscillator. In
practice, if only a very small amount of damping is present and fp = fy, the
amplitude can get so large that the oscillating system will break apart.

The reaching of maximum amplitude by an oscillator
when the frequency of an external periodic force
is equal to the natural frequency is called resonance.
During resonance, there is maximum rate of transfer of energy
from the driver to the driven oscillator.

For a lightly damped simple harmonic oscillator, its natural frequency is
progressively lowered with increasing damping.

Fig. 6.2 shows that if the amount of damping is increased,
1. the amplitude-frequency curve will be lowered
2. the peak will shift towards lower frequency &
3. the width of the spike is wider i.e. spike is less sharp.

Applications of Resonance
Undesirable Oscillation and Resonance

Metal sheets, wooden plank and more complicated structures like the frame
of a car and casing of a washing machine all can vibrate somewhat when
knocked or deformed a little. The vibrations caused by such onetime
disturbance are not a big problem as they will die out sooner or later. A
bigger problem is caused by a periodic driving force such as that of a motor.
A motor has a core which can spin at variable frequency. The core’s mass is
rarely uniformly distributed around its axis of rotation thus leading to
wobbling motion which causes its casing and any connected external parts
to vibrate. As we saw earlier, when the frequency of the motor’s spinning
matches the resonant or natural frequency of the connected parts, the
amplitude of vibration can become much bigger than that achieved by a
single knock or displacement. Such big amplitudes can cause unwanted
noise and breakage of the vibrating structures.

The reaching of
maximum
amplitude by an
oscillator when
the frequency of
an external
periodic force is
equal to the
natural
frequency is
called resonance.
During
resonance, there
iS maximum rate
of transfer of
energy from the
driver to the
driven oscillator.

Natural
frequency for a
lightly damped
simple harmonic
oscillator is
progressively
lowered with
increasing
damping.

3 effects of

increased

damping for

Xo—fo graph:

1 curve overall
lowered

2 peak shifts to
lower
frequency

3 spike is less
sharp

Resonance can
cause unwanted
problems such
as noise and
breakage.
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Avoiding Oscillation and Resonance

What can be done to avoid the undesirable forced vibrations especially at
resonance? One solution is to add damping. Firstly, it has the effect of
reducing amplitudes at all frequencies. Secondly it can lower or shift the
resonant frequency out of the frequency range of the driving force.

If we simplify the vibrating structure to a mass-spring system, we see that its
natural frequency is determined by the spring constant and mass (see
section 2 & start of section 6). Therefore, we can shift the resonant
frequency out of the frequency range of the driving force by using different
materials (different k) for the structure. Changing the shape of the structure
has the effect of modifying the stiffness or elastic property as well as the
mass distribution i.e. equivalent to changing k and m.

Damper

Buildings and bridges can also
oscillate due to earthquake or wind.
Dampers are often used to convert g
the vibrational energy to heat. Fig. oil
6.4 shows one type of damper. o

When connected between two

pillars or parts that are vibrating, hole in spring
the piston will be pushed in and out Fig. 6.4 piston

of the cylinder of oil. The holes in

the piston allow oil to flow through and the viscous drag converts the kinetic
energy to heat. There are many other kinds of dampers but they all reduce
the vibrations by converting kinetic energy to heat.

A damper

YYYYYYYYYYYYYYY

Desirable Vibration and Resonance

Not all instances of resonance are bad. Resonance is an important part of
how musical instruments produce musical notes and how we are able to
produce different kinds of sound during speech.

Consider a string on a guitar or an air column in a flute. Both the string and
air molecules in a column can be caused to vibrate. A string can be plucked
or stuck. The air molecules can be set to vibrate when air flows past a sharp
edge or reed of an instrument. A given length of string or air column has a
number of resonant frequencies instead of just one in the case of a simple
harmonic oscillator (details in topics of Waves and Superposition). The most
dominant resonant frequency determines the overall pitch that we hear while
the other weaker resonant frequencies and non-resonant frequencies
determine the ‘timbre’ or sound character from an instrument. Thus by
controlling the length of vibrating strings or air columns, we can produce the
desired musical notes.

Antennae or receivers of electromagnetic(EM) waves coupled with
appropriate electrical circuits have resonant frequencies that can be
adjusted or tuned to resonate with the driving frequency of the EM waves.
Thus the frequencies of the EM waves are received and converted to
alternating voltages of the same frequencies. This is how radio broadcast is
received and converted to electrical signals which in turn are converted to
sound waves that we hear.

Broad ways to
avoid resonance

1 use damping -
reduce
amplitudes and
shift resonant
freq.

2 change natural
frequency - by
changing
material or
shape

Resonance can
also be desirable
such as in
producing
musical notes
and speech and
electrical tuning
circuits.
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