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OOsscciillllaattiioonnss  
 

11    IInnttoodduuccttiioonn  

OOsscciillllaattiioonn 

Oscillation is a repetitive or cyclical variation of a quantity. Vibration is subset 
of oscillation involving mechanical systems. 

RReessttoorriinngg  FFoorrccee 

An oscillating body must have a restoring force that will always try to bring it 
back to its equilibrium position whenever it is displaced from that position. 

DDaammppeedd  oorr  UUnnddaammppeedd 

A damped oscillator is one which experiences resistive forces during 
oscillation while an undamped oscillator does not. The effect of damping is 
that the oscillations will die out over time. 

FFrreeee  oorr  FFoorrcceedd 

A free oscillator is under the influence of a restoring force and may be 
damped or undamped. No other forces act on the oscillator. A forced 
oscillator is continuously being driven by an external periodic force in 
addition to the restoring force. 

HHaarrmmoonniicc  oorr  AAnnhhaarrmmoonniicc 

A harmonic oscillator is one whose restoring force is proportional to the 
displacement from its equilibrium. If the restoring force is not proportional to 
the displacement, then it is anharmonic. 

EExxaammpplleess  ooff  FFrreeee  OOsscciillllaattiioonnss 

A pendulum bob swinging to and fro has a cyclical variation of position. 

A fluctuating electric voltage in our power supply. 

The vibration of a plucked guitar string. 

 
22    SSiimmppllee  HHaarrmmoonniicc  MMoottiioonn  ((SSHHMM))  
 

DDeeffiinniittiioonn  

SHM is an oscillatory motion that is free, harmonic and undamped. The 
resulting motion is characterised and defined as follows: 

 

Mathematically, the definition is: 

 

where a  is the acceleration, x  is the displacement and   is a 

constant depending on the characteristics of the system. 

The negative sign reflects the opposite directions of a  & x . 

 

EExxaammppllee  --  MMaassss--sspprriinngg  OOsscciillllaattoorr  

Assume the spring can exert 
both pushing and pulling forces 
and this elastic force is given by 
Hooke’s law Fe = kx 
(magnitudes) when the mass 
has a displacement x from the 
equilibrium position. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simple harmonic 
motion is a 
periodic motion 
whereby the 
acceleration is 
proportional and 
opposite to the 
displacement 
from the 
equilibrium 
position. 

2a x   

or just 
magnitudes: 

a = 
2
x  

 

---- (Eq. 1.1) 
 

 

2a x 

 
 

 

SHM is an oscillatory or periodic motion whereby the acceleration 
is proportional to the displacement from the equilibrium position 

and always towards the equilibrium position. 
 

 

m 

Fig. 2.1 

frictionless 
surfaces 

equilibrium position 
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When the mass is displaced to the right, the spring pulls it to the left. When 
the mass is displaced to the left, the spring pushes it to the right. Thus the 
directions of the elastic force and the displacement are always opposite and 

we can represent the relative directions by writing eF kx  . The elastic 

force always tries to restore the mass back to the equilibrium position. Hence 
the restoring force for this system is the elastic force.  

Vertically, the normal force cancels the weight. Horizontally the elastic force 

is the only force so eF = netF . Therefore kx ma   and it can be re-written as 

2a x   where 2 k

m
  . In other words, the mass-spring set-up fulfils the 

defining condition for SHM and so we expect that when the mass is given an 
initial displacement and let go, the subsequent oscillatory motion would be 
classified as SHM. 

 

EExxaammppllee  --  SSwwiinnggiinngg  PPeenndduulluumm  

 
Hence a = 

2
x again where 

2
 = g/L. When  gets increasingly smaller, the 

bob’s actual displacement ax would become increasingly closer to the 

horizontal displacement hx  (see Fig. 2.2). The direction of a  is given by 

direction of mg sin  component which is opposite to that of displacement 

when  is small. Thus the smaller the angle , the closer the pendulum’s 
motion matches SHM. 

In this case, the restoring force is provided by a component of the weight. In 
general, any oscillator whose restoring force or net force or acceleration can 
be shown to be directly proportional and opposite to the displacement from 
the equilibrium position must be a simple harmonic oscillator. 

We can also see that 
2
 = k/m and 

2
 = g/L are the constants of 

proportionality in the defining equation 2a x  . In general  is dependent 

on quantities which are characteristics of the set-ups like spring constant k, 
mass m, gravitational field strength g and length L. 

 
33    SSHHMM  --  DDeessccrriibbiinngg  MMoottiioonn  

The SHM equation 2a x   can be written as 
2

2

2

d x
x

dt
  . The 2

nd
 

equation is known as a differential equation which like a quadratic equation 
has solutions satisfying the equation. In this case, the solutions are 

sinusoidal functions like 0 sin( )x x t  and 0 cos( )x x t where -ve and +ve 

values are opposite in directions. Solving differential equations is not in the 
syllabus so we will look at other ways of arriving at these solutions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Any motion that 
fits the equation 

2a x   is 

SHM, i.e. 

1 a  x 

2 a  opposite to 

x  

Different set-ups 
involve different 
forces providing 
the restoring 
force leading to 

 dependent on 
different system 
properties. 

Fig. 2.2 

Only 2 forces on bob - T & mg 

T = mg cos 

Fnet = mg sin   --- (A) 
 

hx  is bob’s horizontal displacement.  

sinhx L   --- (B) 

 
Replacing Fnet by ma in (A) and 

using sin  = xh/L from (B): 

hx
ma mg

L

 
  

 
 

2   where 
g g

a x
L L


   

    
   

 

 

Length L 

hx  

L sin 

weight 
mg 

 

mg sin 

mg cos 

T  Tension  

equilibrium 
position 

ax  
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x - t   PPlloott  

If a pen is attached to an oscillating mass and its motion is recorded on a 
moving strip of paper, the resulting plot shows how the displacement varies 
with time: 

 

It turns out that the x t  plot will be sinusoidal i.e. sine and all shifted sine 

plots. The plot will be described by 0 sin( )x x t  if the pen is only brought 

to touch the paper when the bob is passing the equilibrium position on its 
way up like in Fig. 3.1 and upward direction is chosen to be positive. 

 
 

v - t  &  a - t   PPlloottss  

From the above x t  plots, it is easy to obtain the corresponding v t  and 

a t  plots as /v dx dt  and 2 2/a d x dt : 

The maximum magnitude on the vertical axis is called amplitude. Hence the 

amplitude of x t  plot is x0, the amplitude of v t  plot is v0 (=  x0) and the 

amplitude of a t  plot is ao (= 
2
 x0 = v0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When an 
oscillator fulfils 
the conditions for 
SHM, the 
resulting 
variation of 
displacement 
with time is 
sinusoidal. In 
fact, the reverse 
is also true i.e. a 

sinusoidal x t  

implies SHM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If displacement 
amplitude = x0 
then 
1 velocity 

amplitude 

v0 =  x0 
2 acceleration 

amplitude 

a0 = 
2
 x0  

 = v0 

t 

v  

t 

Fig. 3.4 Fig. 3.5 

v   

t 

a  

t 

2

0 cos( )a x t    

Fig. 3.6 Fig. 3.7 

a   
2

0 sin( )a x t      

v0 

v0  

0 sin( )v x t    
0 cos( )v x t     

v0 

v0  

a0 

a0  a0  

a0 

x  
t 

Fig. 3.1 

oscillating 
bob and 

pen 

paper 
strip 

pulled at 
constant 
speed 

If the pen only starts plotting 
when it is at its highest point 
and going downwards, plot will 

be 0 cos( )x x t : 

If the pen starts plotting when it 
is slightly above the equilibrium 
position and going upwards, plot 

will be 0 sin( )x x t   : 

x0 

t 

Fig. 3.2 

x   

t 

x  

Fig. 3.3 

x0  

x0 

x0  
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PPhhaassee  AAnngglleess  aanndd  PPhhaassee  DDiiffffeerreennccee  

PPhhaassee  AAnnggllee 

In sinusoidal functions, the quantity t or (t + ) is a phase angle measured 
in radians or degrees. The Moon goes through a cycle of different phases in 
28 days. Similarly, a simple harmonic oscillator goes through a cycle of 
different displacements and velocities as the phase angle increases with t. 

In the mathematical sinusoidal functions - sin or cos - as  changes by 2 

radians or 360, the functions’ values go through one cycle of change. These 
functions only operate on angles. Therefore sin(2 s) or cos(10 cm) are 
meaningless. In order to have the functions vary with time t instead of angle 

, we need to ‘map’ or ‘transform’ the t variable to the  variable using a 
conversion factor just like an exchange rate from one currency to another. 
This is done based on the following: 

1.  should be proportional to t    = ct 

2. one cycle in angle is 2 while one cycle in time is a period T  

 2 = cT 

2
Sub  from (2) into (1)

2

c
T

T
t









  

  

Earlier, the conversion factor was also found experimentally to be  which 
depends on the properties of the oscillator system. Frequency f is defined to 

be 1/T. In this case  = 2/T is called angular frequency (note that it is called 
angular velocity in Circular Motion) 
 

PPhhaassee  DDiiffffeerreennccee  

In 2 sin( 90 )y    , when  is zero, 2y ’s value is that of 1 sin( )y   when 

 = 90 and as  increases, the value of y2 will take on values of y1 from 90 

onwards i.e. the plot of y2 is obtained by shifting y1 to the left by 90. After 

shifting, the resulting plot is equivalent to cos( )y   as shown in Fig. 3.8. 

 

In general, if angle  is added to the phase angle of a sinusoidal function, the 

effect is to shift the function to the left by  on the horizontal axis (minus sign 
corresponds to shifting to the right).  

Comparing 2 cos( ) sin( 90 )y       and 1 sin( )y  we can say that the 

phase angle of 2y  leads the phase angle of 1y  by 90. When we are not 

interested in which phase angle is leading then we will just look at the 
absolute value of the difference in phase angles or phase difference in short. 

In this case, the phase difference  is 90. 

Phase difference  is thus the absolute value of the difference in phase 
angles of 2 sinusoidal functions and it can be found by looking at the amount 

of relative shift in terms of angle. In the context of 2 oscillators,  reflects the 
difference in their positions and motions(velocity and acceleration). 

 

 

 

 

 

 

 

 

 

 

 

The phase angle 
of a sinusoidal 
function can be 
written in terms 
of variable 
quantities which 
are not angles 
by using 
appropriate 
conversion 
factors. 

The conversion 

factor is 
2

T


    

and called the 
angular 
frequency. 

 

 

 

 

 

 

 

 

Phase difference 

 is the absolute 
value of the 
difference in 
phase angles of 
2 sinusoidal 
functions, found 
by looking at the 
amount of 
relative shift in 
terms of angle. 

 reflects the 
difference in 
positions and 
motions of 2 
oscillators. 

1 

 

Fig. 3.8 

y  

1  

1 sin( )y   2 sin( 90 )y   

 

90 180 270 360 

where conversion factor c is 
2

T


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If the horizontal axis is t instead of , the relative shift in terms of angle can 

still be easily found by remembering that T corresponds to 360 or 2. In Fig. 

3.9, the relative shift is T/8 and so  must be 360/8 or 45. 

 

To arrive at a formula, use the fact that phase angle is related to t by 

2
t

T


  , thus difference in phase angles or 

2
t

T


     . 

 

a - x     aanndd    v - x   PPlloottss  

 

Based on the relation 2a x  , the 

a x  plot is as shown in Fig. 3.10 

where +/ signs indicate directions. 
 
 
As shown in previous section, the 

general x t function for SHM is 

 0 sin( )x x t         ---- (1) 

then  0 cos( )v x t       ---- (2) 

2 2 2

0

2 2 2

0 0

2 2 2 2 2

0 0

1 sin ( )     as  sin ( ) cos ( ) 1

sin ( )

              using sin ( )  from (1)

v x t t

v x

t

v x x t

x x x t

      

  

  

       

   

    

 

 
We have eliminated the t variable from equations (1) & (2) to arrive at a 

formula relating variables v  and x  instead. 

Using 
2 2

0v xx   , we can then get v x  plot as shown in Fig. 3.11. 

 
 

 

 

 

 
Phase difference 

due to t is given 

by 
2

t
T


    or 

360
t

T



   

 

 

 

 

 

 

 

 

 

 

 

The variation of 

v  with x  is 

2 2

0v xx    

‘’  reflects the 
fact that for each 

x  there are two 

possible v  
directions as 
shown in Fig. 
3.11. 

 

 

 

 

 

 

 

 

 

 

 

 

1 

t 

Fig. 3.9 

y  
sin( )y t  sin( )y t    

T/4 T/2 3T/2 T 
1  

T/8 

x   

Fig. 3.10 

a  

+
2
x0 


2
x0 

+x0 

x0 

x   

v  

+x0 

+x0 

x0 

x0 

 

 

 

 
v   

x   

v   

x
  

+ve to the right 

v  -ve  & x  +ve 

  

  

 

 

v   

x
  

v  +ve  & x  -ve 

  

 

 

v  -ve  & x  -ve 

v   

x
  

v  +ve  & x  +ve 

  

 

 

Fig. 3.11 

Fig. 3.12 

For 0 cos( )x x t  the plot goes from 

 (Fig. 3.11 & 3.12). 

For 0 cos( )x x t  the plot goes 

from . 

For 0 sin( )x x t  the plot goes from 

. 

For 0 sin( )x x t   the plot goes from 

. 
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UUnniiffoorrmm  CCiirrccuullaarr  MMoottiioonn  aanndd  SSHHMM 

 

The shadow’s displacement from the middle position is x = r sin(t) which is 
sinusoidal and thus the shadow’s motion is SHM. 

 

44    SSHHMM  --  EEnneerrggiieess  
 

EE  --  tt    PPlloottss  

 
Note that oscillation period for displacement is T but for KE and PE is T/2. 

Why is the total energy constant? A simple harmonic oscillator by definition 
can only have a restoring force and no resistive forces or other external 
forces. Hence no energy is lost by the oscillator due to resistive forces and 
no work is done on it by other external forces. However Etot = KE + PE is 
continuously switching between totally kinetic and totally potential. 

2 2

max 0 0

1 1
( )

2 2
totE KE mv m x    

To see how KE and PE vary with t, write v in time varying form: 

oscillator at x = 0 when t = 0 oscillator at x0 when t = 0 

0 cos( )v x t   0 sin( )v x t   

2

0

2 2 2

0

21 1
[ cos( )]

2 2

1
cos ( )

2

t

t

m m x

m

KE v t

K xE t

 

 

 



 

2

0

2 2 2

0

21 1
[ sin( )]

2 2

1
sin ( )

2

t

t

m m x

m

KE v t

K xE t

 

 

 



 

 

2 2 2 2 2

0 0

2 2 2

0

2 2

2

2

0

1

2

1 1
cos ( )

2 2

1
1 cos

2

1
sin

2

t

t

t

ot

t

tPE E m

mx m

v

PE t

PE t

P t

x

m

mE

x

x

  

 

 

 

 

 



 

 

2 2 2 2 2

0 0

2 2 2

0

2 2

2

2

0

1

2

1 1
sin ( )

2 2

1
1 sin

2

1
cos

2

t

t

t

ot

t

tPE E m

mx m

v

PE t

PE t

P t

x

m

mE

x

x

  

 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
The projection or 
shadow of an 
object in uniform 
circular motion is 
in simple 
harmonic motion. 
 
 
 
 

E-t plots for SHM 
show: 

1 to and fro 
switching 
between KE 
and PE. 

2 there are 2 
cycles of 
variation in KE 
and PE for one 
cycle of 
variation in 
displacement. 

3 total energy is 
constant as 
resistive forces 
are absent. 

 

 
 
 
 
 
 
To express KE in 
terms of t, use 
the v-t 
expression in 
KE = ½mv

2
. 

 
To express PE in 
terms of t, use 

1 Etot = KEmax 

2 PE = Etot  KE 
 

light 
beam 

screen 

shadow 

screen 

light 
beam 

r 

 = t 

x 

middle 
position 

Side view Plan view 

Shadow moves in SHM 
horizontally as peg on turntable 
undergoes uniform circular motion. 

Fig. 3.13 

E
n
e
rg

y
 

T/2 

 

t 

 

Etot 

KE 

PE 

T/2 

 

t 

 

PE 

KE 

0 

 

0 

 Fig. 4.1a Fig. 4.1b 

T 

 

T 

 

Etot 

E
n
e
rg

y
 

Plotting starts at x = 0 

 

Plotting starts at x = x0 
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EE  -- x   PPlloottss 

To see how KE and PE vary with x, write v in terms of x. 

Use 
2 2

0v xx    as derived earlier. 

2 22 2

0

1 1
( )

2 2
x m mKE xv x    

  and 

2 2 2 2

2

2

2

0 0

2

1

2

1 1
( )

2 2

1

2

x

x

t t

x

oE m

mx

PE v

PE x

PE x

m x

m

 



 

  



 

 

55    DDaammppiinngg  

When resistive forces such as friction and viscous force are allowed to act 
on a simple harmonic oscillator we say that it is being damped.  The effect of 
damping is negative work done on the oscillator leading to energy loss. The 
oscillator’s motion is then no longer simple harmonic. However, resistive 
forces are mostly impossible to remove completely, so if they are small we 
can still treat the oscillator as close to simple harmonic. 

Damping is classified into three categories.  

 

Oscillations have 
gradually decreasing 

amplitude. Period 
increases with 

increased damping.   

Displaced oscillator 
returns to equilibrium 
in shortest possible 

time with no 
oscillation. 

Displaced oscillator 
returns to equilibrium 
longer than in critical 

damping with no 
oscillation. 

Damping is less than 
critical. 

A precise amount of 
damping marks the 

separation of light and 
heavy damping. 

Damping is greater 
than critical. 

Example 
 
 

 
 
 
 

Oscillator with card 
attached encounters 

non-negligible air 
resistance. 

Example 

Car’s suspension 
system fitted with 

damper to minimise 
oscillations yet not 
over damped till too 

stiff for comfort. Critical 
damping is used in 

machines, buildings, 
bridges to remove 

vibrations. 

Example 

Auto-closing door with 
damper set to heavy 
damping so that door 

closes gently. 

 
 
 
 
 
 
To express KE in 
terms of x, use  

2 2

0v xx    

in KE = ½mv
2
.  

 
To express PE in 
terms of x, use 

PE = Etot  KE 
 
 

 

 
A damped 
oscillator is one 
which 
experiences 
resistive forces 
leading to loss of 
energy as heat. 
 
 
Three kinds of 
damping: 

1 Under 
damping 
where 
oscillations 
have 
exponential 
drop in 
amplitude. 

2 Critical 
damping 
where initial 
displacement 
decreases to 
zero in 
shortest 
possible time. 

3 Over damping 
where 
excessive 
resistive force 
causes 
displacement 
to drop to zero 
in longer time 
than for critical 
damping.   

 
 
 
 
 

x   x   

Under/light damping 

 

Critical damping 

 

Over/heavy damping 

 

t t 

x   
exponential 

t 

Fig. 5.1a Fig. 5.1b Fig. 5.1c 

x   

Energy 

x0 x0 

PE 

KE 

0 

Etot 

Fig. 4.2 

card 
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66    FFoorrcceedd  OOsscciillllaattiioonnss  
 

NNaattuurraall  FFrreeqquueennccyy  

Every simple harmonic oscillator when disturbed will oscillate at a 
characteristic frequency known as natural frequency. For example, the mass 

spring system has 2 k

m
   and since  = 2f, its natural frequency is 

1

2

k
f

m
   where k and m are the spring constant and mass respectively. 

Different systems thus have different characteristic natural frequencies. 
 

FFoorrcceedd  OOsscciillllaattiioonnss  &&  RReessoonnaannccee  

Forced oscillations refer to the application of a periodic driving force to force 
an oscillator to oscillate at the frequency of the driving force. If a simple 
harmonic oscillator is subjected to an external periodic driving force, after a 
period of erratic motion it will eventually settle into a steady oscillation at the 
frequency of the driving force. 

 

Using the set-up in Fig. 6.1, the frequency of the driving force can be varied 
to investigate the oscillations at different frequencies. For this simple 
harmonic oscillator with a little damping, a series of driving frequencies fD are 
chosen and for each fD the steady state amplitude x0 of the forced oscillation 
is measured and plotted. The resulting curve looks like ‘underdamped 1’ (Fig. 
6.2) with a peak very close to the natural frequency fN. 

 

To make sense of the curve, consider a child on a 
swing which is approximately a simple harmonic 
oscillator. After the first push, she will move forward 
and back with the natural frequency. If you push again 
just when she is swinging forward, you would do 
positive work and impart energy to her thus increasing 
her amplitude x0. However if you push when she is 
swinging backwards you would do negative work and 
remove energy thus decreasing her amplitude.  

 
 
Natural 
frequency of a 
simple harmonic 
oscillator is a 
characteristic 
frequency of 
oscillation 
dependent on 
system’s 
properties. 
 
 
Forced 
oscillations refer 
to the application 
of a periodic 
driving force to 
force an 
oscillator to 
oscillate at the 
frequency of the 
driving force.  
 
 
 
 
 
 
 
 
 
 
The variation of 
steady amplitude 
with driving 
frequency is 
shown in Fig. 6.2. 

Fig. 6.1 

periodic 
force 

motor 

restoring force 
to equilibrium 

Driven oscillator’s 
amplitude x0 

amplitude 
of driver 

driving 
frequency fD 

natural 
frequency fN 

increased 
damping 

 

underdamped 2 

no damping 

Fig. 6.2 

underdamped 1 

push 

Fig. 6.3 
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It is easy to see that if your frequency of pushing matches the natural 
frequency the amplitude x0 will get bigger and bigger but a limit will be 
reached. Maximum amplitude x0 max will be reached because damping will do 
more negative work with greater amplitude. 

Now imagine that the frequency of pushing is halved i.e. one push for every 
2 swings. There is now less energy per swing imparted to the child while the 
resistive forces are still continuously taking energy out of each swing. The 
final steady amplitude will be smaller than x0 max.  

Next imagine triple the original frequency i.e. 3 pushes per swing. Now some 
of the pushes will take place during the backward swing and so the final 
steady amplitude will again be smaller than x0 max.  

The driving force in the mass-spring system is actually more complicated 
than the pushes in the swing scenario. In general, when the driving 
frequency fD doesn’t match the natural frequency fN, there will be times when 
the push and pull of the driver would end up impeding rather than helping 
the oscillation. Hence the maximum steady amplitude will only be achieved 
when driving frequency is near the natural frequency.  

In theory, when there is no damping and fD = fN the amplitude can go to 
infinity since there is only input of energy but no loss from the oscillator. In 
practice, if only a very small amount of damping is present and fD = fN, the 
amplitude can get so large that the oscillating system will break apart. 

 

For a lightly damped simple harmonic oscillator, its natural frequency is 
progressively lowered with increasing damping.  

Fig. 6.2 shows that if the amount of damping is increased, 

1. the amplitude-frequency curve will be lowered  

2. the peak will shift towards lower frequency & 

3. the width of the spike is wider i.e. spike is less sharp. 

 

AApppplliiccaattiioonnss  ooff  RReessoonnaannccee  

UUnnddeessiirraabbllee  OOsscciillllaattiioonn  aanndd  RReessoonnaannccee 

Metal sheets, wooden plank and more complicated structures like the frame 
of a car and casing of a washing machine all can vibrate somewhat when 
knocked or deformed a little. The vibrations caused by such onetime 
disturbance are not a big problem as they will die out sooner or later. A 
bigger problem is caused by a periodic driving force such as that of a motor. 
A motor has a core which can spin at variable frequency. The core’s mass is 
rarely uniformly distributed around its axis of rotation thus leading to 
wobbling motion which causes its casing and any connected external parts 
to vibrate. As we saw earlier, when the frequency of the motor’s spinning 
matches the resonant or natural frequency of the connected parts, the 
amplitude of vibration can become much bigger than that achieved by a 
single knock or displacement. Such big amplitudes can cause unwanted 
noise and breakage of the vibrating structures.  

 
 
 
 

 
The reaching of 
maximum 
amplitude by an 
oscillator when 
the frequency of 
an external 
periodic force is 
equal to the 
natural 
frequency is 
called resonance. 
During 
resonance, there 
is maximum rate 
of transfer of 
energy from the 
driver to the 
driven oscillator. 
  
 
 
Natural 
frequency for a 
lightly damped 
simple harmonic 
oscillator is 
progressively 
lowered with 
increasing 
damping. 
 
3 effects of 
increased 
damping for 

x0fD graph: 

1 curve overall 
lowered 

2 peak shifts to 
lower 
frequency 

3 spike is less 
sharp 

 
 
 
 
 
 
Resonance can 
cause unwanted 
problems such 
as noise and 
breakage. 
 
 
 
 

 

The reaching of maximum amplitude by an oscillator 
 when the frequency of an external periodic force 
  is equal to the natural frequency is called resonance. 
During resonance, there is maximum rate of transfer of energy  
 from the driver to the driven oscillator. 
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AAvvooiiddiinngg  OOsscciillllaattiioonn  aanndd  RReessoonnaannccee 

What can be done to avoid the undesirable forced vibrations especially at 
resonance? One solution is to add damping. Firstly, it has the effect of 
reducing amplitudes at all frequencies. Secondly it can lower or shift the 
resonant frequency out of the frequency range of the driving force.  

If we simplify the vibrating structure to a mass-spring system, we see that its 
natural frequency is determined by the spring constant and mass (see 
section 2 & start of section 6). Therefore, we can shift the resonant 
frequency out of the frequency range of the driving force by using different 
materials (different k) for the structure. Changing the shape of the structure 
has the effect of modifying the stiffness or elastic property as well as the 
mass distribution i.e. equivalent to changing k and m. 

DDaammppeerr 

Buildings and bridges can also 
oscillate due to earthquake or wind. 
Dampers are often used to convert 
the vibrational energy to heat. Fig. 
6.4 shows one type of damper. 
When connected between two 
pillars or parts that are vibrating, 
the piston will be pushed in and out 
of the cylinder of oil. The holes in 
the piston allow oil to flow through and the viscous drag converts the kinetic 
energy to heat. There are many other kinds of dampers but they all reduce 
the vibrations by converting kinetic energy to heat. 

DDeessiirraabbllee  VViibbrraattiioonn  aanndd  RReessoonnaannccee 

Not all instances of resonance are bad. Resonance is an important part of 
how musical instruments produce musical notes and how we are able to 
produce different kinds of sound during speech. 

Consider a string on a guitar or an air column in a flute. Both the string and 
air molecules in a column can be caused to vibrate. A string can be plucked 
or stuck. The air molecules can be set to vibrate when air flows past a sharp 
edge or reed of an instrument. A given length of string or air column has a 
number of resonant frequencies instead of just one in the case of a simple 
harmonic oscillator (details in topics of Waves and Superposition). The most 
dominant resonant frequency determines the overall pitch that we hear while 
the other weaker resonant frequencies and non-resonant frequencies 
determine the ‘timbre’ or sound character from an instrument. Thus by 
controlling the length of vibrating strings or air columns, we can produce the 
desired musical notes. 

Antennae or receivers of electromagnetic(EM) waves coupled with 
appropriate electrical circuits have resonant frequencies that can be 
adjusted or tuned to resonate with the driving frequency of the EM waves. 
Thus the frequencies of the EM waves are received and converted to 
alternating voltages of the same frequencies. This is how radio broadcast is 
received and converted to electrical signals which in turn are converted to 
sound waves that we hear. 

 

 

 

 

 

 

 

 

 
 
Broad ways to 
avoid resonance 

1 use damping - 
reduce 
amplitudes and 
shift resonant 
freq. 

2 change natural 
frequency - by 
changing 
material or 
shape 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resonance can 
also be desirable 
such as in 
producing 
musical notes 
and speech and 
electrical tuning 
circuits. 

hole in 
piston 

spring 

oil 

Fig. 6.4 

A  damper 


