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DDyynnaammiiccss  
 

11    IInnttrroodduuccttiioonn  

In Kinematics, we looked at velocities, displacements and trajectories for a 
body with acceleration at constant direction and magnitude. In Forces, we 
looked at the different kinds of forces and their characteristics. Now, in 
Dynamics, we are interested to identify forces at work in a given situation 
and figure out how the net force determines the acceleration and thus the 
type of motion or the lack of motion. 

  

22    NNeewwttoonn’’ss  TThhiirrdd  LLaaww  

 

The pair of equal and opposite forces is called an action-reaction pair or the 
third law pair. The law essentially says that all forces come in pairs. Hence if 
Earth pulls on you with a gravitational force, you must be pulling on Earth 
with the same type of force i.e. gravitational.  

What the third law says about the action and reaction pair of forces: 

1. they have equal magnitude 
2. they have opposite directions 
3. they act on different bodies 
4. they are of the same type 

  

33    NNeewwttoonn’’ss  FFiirrsstt  LLaaww  aanndd  IInneerrttiiaa  

 

The breakthrough significance of this law may be harder to appreciate in this 
modern age than when it was first put forth in the 17

th
 century by Newton. 

Back then, people did not have our present understanding of forces. They 
attributed the eventual stoppage of everyday moving objects to their inherent 
nature instead of attributing to frictional forces at work.  

Today, it is much easier for us to understand that if we remove all forces 
acting on a body, it will stay at rest if it were originally at rest and it will move 
with constant speed in a straight line if that was what it was doing before.  

However, two aspects of the law are still easily overlooked. The first 
concerns ‘uniform motion in a straight line’ which means constant velocity or 
constant speed and constant direction. If a body moves with constant speed 
in a circle, it in fact has a changing velocity because the direction of the 
velocity vector changes continuously and that requires a net force. 

The second aspect is the ‘net’ force. Occasionally, some people mistake the 
law to mean if ‘no forces’ act on a body, then there will be no change to the 
motion. In fact, ‘no forces’ is not equivalent to ‘no net force’. 

IInneerrttiiaa  

The First Law also implies that objects have a tendency to remain at rest or 
in constant velocity motion i.e. the tendency to resist change in motion. This 
tendency is called inertia and the first law is also called the Law of Inertia. It 
turns out that a measure of inertia is just mass. Hence a more massive 
object has greater tendency to stay at rest or it is harder to get it moving. 
Similarly, a more massive object with a certain velocity has greater tendency 
to maintain that velocity or it is harder - more force required - to cause its 
velocity to change, be it magnitude or direction. 

 

 
 
 
 
 
 
 
 
 
Newton’s Third 
Law states that 
when body A 
exerts a force on 
body B, body B 
will exert an 
equal but 
opposite force 
on body A. 
 
 
 
 
 
 
 
 
Newton’s First 
Law states that 
every body 
continues in its 
state of rest or of 
uniform motion 
in a straight line 
until it is caused 
to change by a 
net force. 
 
 

A change in 
motion can 
mean a change 
in the magnitude 
or direction of 
velocity. 
 
 
 
 
 
Inertia is the 
tendency to 
resist a change 
in motion. 
Mass is a 
measure of 
inertia. 
 

Every body continues in its state of rest  
or of uniform motion in a straight line 

until it is caused to change by a net force. 
 

When body A exerts a force on body B, body B will exert an equal but 
opposite force on body A. 
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The driver of a truck carrying logs as 
shown in Fig. 3.1 must be aware of 
the logs’ inertia because it is a matter 
of life and death. The driver must 
secure the logs properly or else 
during sudden braking, the logs may 
not stop while the truck has stopped. 
The driver may then be crushed by 

the forward moving logs. Such tragic events happen because the massive 
logs have great inertia and so they require a large net force to stop. When 
not properly secured, it means there is insufficient force available to bring the 
logs to a stop within the short sudden braking time. 
 
You might have experienced being thrown 
towards the right side when the bus you were in 
suddenly swerved to the left. This also can be 
explained using the law of inertia or Newton’s 
First Law. Assume that before the bus turned, 
you were travelling in a straight line and thus 
had the tendency or inertia to continue moving 
forward in a straight line. When the bus turned 
left, your lower body was in contact with the 
seat and so the seat dragged your lower body 
leftwards via friction force. Meanwhile your 
upper body didn’t receive the help of such an 
external force except the sideways pull from your lower body. As a result, 
your upper body tended to follow the original straight line motion and so 
tilted to the right. If the seat were very smooth such that there was very little 
friction, you would find your whole body sliding towards the right until you hit 
the right side body of the bus and the normal contact force from the bus then 
provided a net force to bring about a change in direction of your velocity.   
 

44    SSyysstteemm  aanndd  FFrreeee  BBooddyy  DDiiaaggrraamm  

SSyysstteemm  

In physics, clearly identifying the system or the object under study is very 
important. Identifying a system is like defining a problem. An ill-defined 
problem or system makes it difficult or impossible to have a clear 
understanding of the problem or system. Also, an ill-defined problem lacks a 
clear boundary and so we cannot clearly say whether we have solved it or 
not because we do not quite know the actual scope of the problem. The 
principle of clear definition of problem or system is in fact very general and 
applicable to many non-physics contexts. 

Whoever best describes the problem is the one most likely to solve it. 
Dan Roam 

If we can really understand the problem, the answer will come out of it, 

because the answer is not separate from the problem. 
Jiddu Krishnamurti 

While it is useful to set up a boundary for a problem or system, we must not 
forget that what is inside may interact or have mutual influence with what is 
outside. For a system in physics, try and imagine a boundary enclosing the 
object of interest. Forces and energies originating from outside this 
enclosure are considered external. A system can have quantifiable 
properties like mass, energy, charge, pressure etc. The properties of the 
system can often be changed through interactions with the external world or 
they can change due to some internal processes. 

 
 

 
 
 
 
The larger the 
mass, the 
greater the 
tendency to 
resist a change 
in motion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clearly 
identifying a 
system or object 
of interest is 
critical to 
analyses and 
problem solving. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1 

Fig. 3.2 
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FFrreeee  BBooddyy  DDiiaaggrraamm  

In most given situations where we are interested to analyse the connection 
between the type of motion and the forces at work, we need to be clear 
which object or part of the object we are interested in i.e. which is the system. 
To help us to focus only on the system, we make a sketch of the system 
together with the forces on it. Such a sketch is called a free body diagram. 

For example, in Fig. 4.1, a boat is 
travelling with constant velocity. If 
we are interested in the forces and 
their moments on the boat, then we 
would sketch Fig. 4.2, which shows 
that there are both clockwise and 
anti-clockwise moments. However, 

in many cases when we do not need to know the points of application of the 
forces, we can represent the system by a circle or box and focus solely on 
showing the directions and relative magnitudes of the forces as shown in Fig. 
4.3. 

 
 
 

55    NNeewwttoonn’’ss  SSeeccoonndd  LLaaww  

MMoommeennttuumm  

Before discussing Newton’s Second Law, we need the concept of 
momentum. 

 

It is a rule that multiplying a vector by a scalar gives a vector. Mass m is a 

scalar while velocity v


 is a vector, hence momentum p


 is a vector. 

The reason why vm


 is called linear momentum is because there is also 
angular momentum. When not stated, the word momentum is by default 
referring to linear momentum. 

The insensitivity to the vector nature of quantities like velocity and 
momentum is a major cause of many mistakes made by students. Many 
difficulties arise from the inability to work out the change of a vector quantity. 
For example, consider a ball with momentum 4 kg m s

-1
 to the right colliding 

with a wall and rebounding with a momentum of 3 kg m s
-1

 to the left, what is 
the change in its momentum? If your answer is ‘decrease of 1 kg m s

-1
’ then 

you need to review your concept of vector subtraction. The correct answer is 

‘7 kg m s
-1

 to the left’. Another example below shows how p


  is obtained.  

 

 
 

A free body 
diagram shows 
the forces acting 
on an identified 
system. 

 

 

 

 

 

 

 

 

Whether 
representing a 
system with a 
circle or a fairly 
accurate sketch 
depends on what 
needs to be 
shown. 

 

 

 

 

Linear 
momentum of a 
body is defined 
as the product of 
its mass and 
velocity. 

vmp


  

 

 

 

 

It is important to 
be sensitive to 
the vector nature 
of momentum 
and ‘change of 
momentum’. 

)( if ppp


  

 

 

 

 

Linear momentum of a body is defined as the product of  

its mass and velocity.   vmp


  

 

upthrust 

weight 

engine 
thrust 

viscous 
force 

upthrust 

weight 

engine 
thrust 

viscous 
force 

Given 
initial and 

final 
momenta: 

ip


 

fp


 

The change in 
momentum is 

)( if ppp


  - ip


 
fp


 

p


  

Fig. 5.1 

Fig. 4.1 

Fig. 4.2 Fig. 4.3 
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NNeewwttoonn’’ss  SSeeccoonndd  LLaaww  

 

For problem solving, it is useful to be familiar with other versions of the 

dt

pd
Fnet


  equation: 

1. am
dt

vd
mFnet



     since vmp


  

2.  Average net force, 
t

p
Fnet







    or   vmptFnet


  

 

 
  

DDiirreeccttiioonnss  ooff  FFnneett,,  ∆∆pp,,  ∆∆vv,,  aa  

It is important to see that ‘rate of change of momentum’ is a vector. Rate of 

change of momentum = /p t   is a vector because a vector p


  divided by 

a scalar ∆t gives a vector. Hence based on the relation /netF dp dt , the 

direction of netF


must be the same as the direction of p


 .  

Let’s look again at Fig. 5.1. The initial and final momenta could be that of a 

billiard ball just before and after colliding into a wall at one side of the table. 

The directions of these momenta are also the directions of the initial and final 

velocities since vmp


 . 

The vector diagram on the right shows the direction of p


 , which must be 

the direction of the net force acting on the ball. In this case, the net force is a 

normal contact force by the table on the ball. 

Based on the relations amdtvdmdtpdFnet


 )/(/ , we can in fact say 

that the directions of netF


, p


 , v


  and a


 are always the same. 

Newton’s 
Second Law 
states that the 
rate of change of 
momentum of a 
body is 
proportional to 
the net force 
acting on it and 
has the same 
direction as the 
force. 

dt

pd
Fnet


  

Also, 

am
dt

vd
mFnet





ave 
t

p
Fnet







  

 

Second law is 
used to define 
force: 
Force on a body 
is defined as the 
rate of change of 
momentum of 
the body in the 
direction of the 
force. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Based on the 
relations 

am

dtvdm

dtpdFnet













)/(

/

the directions of 

netF


, p


 , v


  

and a


 are 

always the same. 

Given 
initial and 

final 
momenta: 

ip


 

fp


 

The change in 
momentum is 

)( if ppp


  - ip


 
fp


 

p


  

Fig. 5.3 

The law states that the rate of change of momentum of a body  

is proportional to the net force acting on it 

and has the same direction as the force. 
dt

pd
Fnet


  

 

p


 

t 

p




∆t 

t1 t2 t3 

3p


  

∆t3 

Average force for ∆t = t2 - t1 

is = 
t

p






 

Instantaneous force 
dt

pd


at t3  

is = 
3

3

t

p






 

Fig. 5.2 

Average Vs Instantaneous 
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IImmppuullssee--mmoommeennttuumm  rreellaattiioonn  FFnneett  ∆∆tt  ==  ∆∆pp  

When the second law is written as vmptFnet


 , it is also known as 

the impulse-momentum relation. When you apply a net force netF


 for 

duration of time ∆t on an object, it is said that you have applied an impulse of 

tFnet


on the object. As a result of that impulse, the momentum of the object 

would have changed by p


  or vm


 . Put in another way, when a net force 

acts on an object, its velocity must change in either magnitude or direction or 
both. This is what the first law is saying but the second law says the same 

and more by quantifying and relating the quantities netF


, ∆t, m and v


 . 

Note that netF


must either be an average value or a constant value during ∆t. 

If netF


 were not constant as shown in the following graph, then the impulse 

is equal to the area under the graph. 

 

Imagine that 5 bullets are fired from a machine gun in quick succession and 

each experiences a horizontal stopping force ( netF


) exerted by a wall and 

the forces are plotted on a time axis: 

 

The area A for each bullet is the impulse exerted by the wall on the bullet to 
stop it. By Newton’s Third Law, the impulse (magnitude only) exerted by 
each bullet on the wall is also A. The total impulse is thus 5A over the time 
duration T. The average force exerted on the wall by the bullets over time T 
is thus = 5A/T or the total momentum change of the 5 bullets divided by the 
time T. 
 

66    UUssiinngg  SSeeccoonndd  LLaaww  

The skilful use of second law to solve problems requires the following 
competencies: 

I. mastery of general problem solving approach 
II. clear identification of system 

III. familiarity with the types and characteristics of forces  
IV. correct understanding and handling of vectors 

 
 
 
 
A box of weight W is resting on a slope of 

inclination  and we want to find the friction force 
on the box. 
 
What would be the first thing we do? 
 

 

 

tFnet


 is called 

impulse (vector). 

vmptFnet




is the impulse-
momentum 
relation. 

 

 

ptFnet


  is 

true only for 
constant net 
force or average 

net force. If netF


 

is not constant, 
then impulse and 
momentum 
change are both 
given by the 
area under the 

netF t - t graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t 

netF


 

0 T 

A 

Fig. 5.5 

t 

netF


 

A 

Fig. 5.4 

B 

Total impulse during T = area B - 

area A 

0 
T 

(Average netF


)T = area B - area A 

Average netF


 = net area / T 

Example 1 

 

W 

 

Fig. 6.1 
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If we can really understand the problem, the answer will come out of it, 

because the answer is not separate from the problem. 
Jiddu Krishnamurti 

 
The first thing to do is to understand the problem. In this example, the word 
resting in ‘weight W resting on a slope’ is a word that holds key meaning. 
The word means that the box has zero velocity and it continues to be at rest 
at subsequent times i.e. it has no change in velocity and so it has zero 

acceleration. Zero acceleration in turn implies that 0netF ma  . Now 

0netF   is the equation we can use to find friction force! 

Key words like ‘resting’ could have been easily overlooked without enough 
practice or exposure to develop the sensitivity. That sensitivity in turn must 
rest on solid conceptual understanding of the word and its associated ideas. 

In general, a problem of finding an unknown almost always involves using an 
equation or equations. The choice of each equation will depend on the given 
situation since each equation is only applicable to a certain context. With 
practice and understanding, you will be able to associate the situation in a 
problem to relevant equations. 

In this current example, it is not difficult to see that 
the system should be the box after we come to the 
conclusion that it must satisfy the equation 

0netF  . Since the situation is simple - only a box 

and a slope - a free body diagram would not be 
necessary. Instead, the forces on the box can be 
directly drawn on the diagram as shown in Fig. 6.2. 

The equation 0netF   in this context means 

0 RFWN


 which does not mean that the addition of the 

magnitudes of the forces is equal to 0. It means that if we 
were to join the vectors head to tail, they will form a closed 
triangle without any resultant vector as shown in Fig. 6.3. 

Based on the triangle in Fig. 6.3, we can then deduce that 

sinRF W   or FR = W sin.   

If the problem had involved the same box sliding down the slope at constant 

velocity, then the answer FR = W sin  will still be valid. This is because 

‘constant velocity’ implies 0netF   also and all the steps to arrive at the 

answer will be the same. For comparison, this problem has also been solved 
by two methods under the chapter on Forces in section 12 on Equilibrium. 

 

 
 

 
A box of mass m has acceleration a down a slope 

of inclination . Find the friction force on the box. 
 

Similar to Example 1 but 0netF   

Given a is downslope  
netF  

downslope too.  
Vector diagram now looks as shown 
in Fig. 6.5. 

 
 
 
 

 
 
Part of the 
approach 
towards any 
problem is to 
always 
understand the 
problem. 
 
That 
understanding 
will naturally 
allow you to 
draw on relevant 
knowledge for 
problem solving. 
 
 
 
 
In physics 
problems, being 
clear about the 
system to 
analyse is critical.  
In the usage of 
the second law, 
the lack of a 
clear object of 
interest would 
impact the 
correct 
identification of 
relevant forces 
contributing to 

netF


. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

W  

RF  

Fig. 6.2 

RF


 

 
N

W  

Fig. 6.3 

Example 2 

 

RF


 

N


 

W


 

 

Fig. 6.5 

netF


 

mg 

 

Fig. 6.4 
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Focus on magnitudes in Fig. 6.6. 

Since no acceleration perpendicular to 

the slope, the magnitudes N = W cos. 

On the other hand, second law requires 
Fnet = ma downslope, 

so W sin - FR = ma, 

 FR = W sin - ma 

 

 

 

 

A boy stands on a weighing scale inside an elevator that is moving 
upwards and slowing down at a rate of 2 m s

-2
. If the boy’s mass is 50 

kg, what is the reading on the scale? 

Firstly, understanding the problem: 

1. “slowing down”  decelerating  netF


and a


 both opposite in 

direction to that of v


 (see Kinematics pg. 3).  netF


’s direction is 

downward & WB > NB. 

2. Scale works because of force pressing against it i.e. it measures the 

normal contact force which is equal and opposite to N


and 
translates it into reading of mass in kg. 

The system is identified to be the boy because a) 
his weight is given and b) the scale measures his 
normal contact force which we want to find. 

The force diagram is as shown in Fig. 6.7. 

Using the equation amFnet


  

 
B BW N ma   

Taking downward as positive and replacing each 
vector in the above equation with a direction (+- 
sign) and a magnitude, 
 (+mg) + (-N) = m(+a) 
 N = mg - ma 
     = 50(9.81 - 2) 
     = 390.5 N 
This force corresponds to a mass of 390.5/9.81 = 39.8 kg 

 the reading on the scale is 39.8 kg 

If this problem had the elevator moving upwards and speeding up, then N > 
W. The weight does not change as m and g are constant. N is the one that 
can change its magnitude and thus the scale reading will be different 
depending on whether the acceleration vector is upward or downward. 
 

77    SSeeccoonndd  LLaaww  &&  MMoommeennttuumm  CCoonnsseerrvvaattiioonn  

 

The above is called the Principle of Conservation of Momentum. 

From the second law 
dt

pd
Fnet


 , if the net force on a system is zero, it 

follows that the rate of change of momentum must be zero, which just means 
that the momentum of the system does not change with time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
The Principle of 
Conservation of 
Momentum 
(PCOM) states 
that the total 
momentum of a 
system remains 
constant 
provided no 
external net 
force acts on the 
system. 

The total momentum of a system remains constant  
provided no external net force acts on the system. 

 

FR 

N 

W 

 

Fnet 

W cos 

W sin 

Fig. 6.6 

Example 3 

 

888  kg 

BW

BN

Fig. 6.7 

v  
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The principle applies to a system of a single body or a collection of bodies. 
For a collection of bodies, the total momentum must be found by adding the 
individual momenta as vectors. 

The principle is one of the most universal in physics and there has not been 
any situation in which the principle is not applicable. Below are some 
examples of how the principle is applied to arrive at the conclusion of 
whether momentum of the system is constant or not. 

Situation System System’s momentum 

A ball 
bouncing on 

the floor. 

Ball 

 

Ball’s momentum is not 
constant because there is mostly 

a net force acting on it. Net 
force is weight when ball is in the 
air. Net force is the resultant of 
the normal contact force and 

weight when on floor. 

An ice hockey 
puck sliding 
horizontally 

across the ice 
rink at 

constant 
velocity. 

Puck 

 

Assume no friction. No net force 
both vertically and horizontally so 

the puck moves with constant 
momentum. 

An astronaut 
throws a 
spanner. 

Astronaut and spanner 

 

Assume astronaut-spanner 
system does not experience a 
net force such as gravitational 

pull from a nearby planet. Though 
the astronaut and spanner 

individually undergoes a change 
in momentum during the throw, 

the total momentum of the 
system is constant at all times. 

In reality, it is often very difficult to have zero net force on a system. Hence, 
we often simplify our analyses by ignoring forces that are much smaller 
compared to the others e.g. the friction on the ice hockey puck. Recall that 
Fnet∆t = ∆p, if Fnet and ∆t are both small, the effect i.e. momentum change, 
will be small. 

 

88    OOnnee  DDiimmeennssiioonnaall  TTwwoo--bbooddyy  IInntteerraaccttiioonnss  

MMoommeennttuumm  CCoonnsseerrvvaattiioonn  

In the previous section we saw that a system with zero net force from its 
surroundings must have constant or conserved momentum. For a 2-body 
system with zero net force, the individual bodies can interact by exerting 
forces on each other and hence change their momenta but the system as a 
whole must have constant momentum. We shall derive the equations 
describing reflecting this outcome. 

For a start, we will look at situations involving an isolated system of 2 bodies 
free from any influence or forces from the surrounding. 

 

 

 

 

 
 
PCOM is 
universal i.e. 
valid for any 
system at all 
times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

N


 

W


 

N


 

W


 

W

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The first example involves 2 bodies moving along the same straight line, 
approaching each other, collide and then either separate or move off 
together: 

 

A second example involves 2 bodies initially at rest together but later, due to 
events such as the release of a compressed spring or an explosion, they 
separate: 

 

In both examples, during the interaction or collision, the 2 bodies exert equal 
but opposite forces on each other (Newton’s third law) for the same duration.  

The forces they exert on each other 
typically vary as in Fig. 8.3. However, we 
will simplify things by using a constant 
average force <F> in the following analysis. 

Due to our assumption that there is 
negligible or no external forces, the only 
forces are the pair of equal(magnitude) 
and opposite(directions as indicated by +- 
signs) forces between the two bodies: 
  

 By Newton’s 3
rd

 law,         
2 1 1 2on onF F       

 Same duration of action so  
2 1 1 2on onF t F t         

 Using Newton’s 2
nd

 law,          _ 21 pp


 _ 

The conclusion is that in the type of interactions considered, the momentum 
changes of the 2 bodies are equal in magnitude but opposite in direction. 
Furthermore, 

               21 pp


  

    )( 2211 ifif pppp


  

  _ iiff pppp 2121


 _ 

The last line says that the total momentum of the 2 bodies finally (at any later 
time) is the same as the total momentum of the 2 bodies initially (at an 
earlier time). In other words, the momentum of the system is conserved as 
expected of a system with zero external net force. 

In our derivation, we considered situations with no external forces but what if 
there are external forces? If external forces are considered, as long as they 
add up to zero, the momentum of the 2 body system will still be conserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a system of 2 
colliding bodies 
or of repulsive 
separation of a 
body into 2, if 
there are no 
external forces 
on the system, 
the equations 
hold:  

2 1 1 2

2 1 1 2

1 2

1 1 2 2

1 2 1 2

( )

on on

on on

f i f i

f f i i

F F

F t F t

p p

p p p p

p p p p

 

   

   

    

   

The last line 
being the 
conservation of 
momentum 
equation (COM). 

Fig. 8.2 

Bullet ejected from toy gun 
using a compressed spring 

Gas ejected from rocket at high 
speed when fuel burns and expands 

Body 1 Body 2 
Body 1 Body 2 

Before collision 

During collision 

After collision 

F2on1 F1on2 

Separate Stuck Fig. 8.1 

F 

t ∆t 
0 

<F> 

Fig. 8.3 
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EEllaassttiicc  aanndd  IInneellaassttiicc  CCoolllliissiioonnss  

Collisions can be classified as elastic or inelastic: 

 

 

An elastic object is one that is able to return to its original shape after 
deformation. This elasticity accounts for the conversion of kinetic energy to 
elastic potential energy during collision and the subsequent reverse 
conversion. This elasticity or the tendency for the colliding objects to push 
back after deformation also explains why elastic objects separate after 
collision.  

The following diagram shows the relationship between the type of collision 
and whether the colliding bodies separate after collision: 

 

Elasticity comes in varying degrees. Hence an elastic collision will have 
equal kinetic energies before and after collision. An inelastic collision in 
which 90% of the original total kinetic energy is retained after collision is 
closer to an elastic collision than to a perfect inelastic collision. In reality, 
there are very few elastic collisions as most collisions involve the loss of 
some of the initial total KE. 

Sometimes it is said that ‘KE is conserved in elastic collisions’ which is 
inaccurate. It is best not to say that because the ‘conservation’ of KE is only 
limited to before and after collision. During collision, the total KE of the 
system is definitely not the same as before collision because some KE has 
been converted to elastic PE or other forms of energy.  

It is useful to think of non-collision type of interactions, such as the rifle-bullet 
and the rocket-exhaust examples, as inelastic because they result in final KE 
of the system being greater than the initial KE. 
 

RReellaattiivvee  SSppeeeeddss  --  RRSSAA==RRSSSS  

Just for emphasis, Section 8 deals with systems isolated from external 
forces and hence Fnet = 0 and so the momentum of the system is conserved 
at all times. In addition, we only consider a simple 2-body interaction 
involving 1-dimensional motions. It may seem useless to study such a 
narrowly defined scenario but the idea is to learn some general principles 
that can be extended to 2D/3D motions and applicable approximately to real 
life situations. 

 

 

 
In elastic 
collision: total 
kinetic energy 
before = total 
kinetic energy 
after collision. 

In inelastic 
collision: total 
kinetic energy 

before  total 
kinetic energy 
after collision. 

 

Colliding bodies 

separate  
elastic or 
inelastic. 

Bodies stuck 

together  
perfect inelastic. 

 

Conservation of 
KE in elastic 
collisions doesn’t 
apply during 
collisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inelastic 

Perfectly 
inelastic 

Elastic Inelastic but not 
completely or perfectly 

stuck separate 

KE before  KE after KE before = KE after 

An inelastic collision is one where the total kinetic energy of the bodies 
before collision is not equal to the total kinetic energy after collision. 

2
22

2
11

2
22

2
11

2

1

2

1

2

1

2

1
vmvmumum   

An elastic collision is one where the total kinetic energy of the bodies 
before collision is equal to the total kinetic energy after collision. 

2
22

2
11

2
22

2
11

2

1

2

1

2

1

2

1
vmvmumum   
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In our narrowly defined context, the conservation of 
momentum (COM) equation holds: 

ffii pppp 2121


  COM 

In addition, if the interaction is elastic, the conservation of 
KE (COKE) equation applies: 

2
22

2
11

2
22

2
11

2

1

2

1

2

1

2

1
vmvmumum   COKE 

It can be shown that a third equation can be derived from 
the above 2 equations. This third equation states that 
relative speed of approach of the 2 bodies is equal to 
their relative speed of separation. 

RSA = RSS RSA=RSS 

The version of RSA=RSS in terms of relative velocities is 1221 vvuu


 . 

Using this alternative version requires caution in remembering the order of 
the subscripts and in handling vectors properly(using +- signs). 

To sum up, for elastic interactions, we can use any two of the three 
equations above to solve problems. However, the recommended way is to 
use COM and RSA=RSS, avoiding COKE because a quadratic equation is 
generally more troublesome to handle. For inelastic interactions, only the 
COM equation can be used. 

 

FFiinnddiinngg  RReellaattiivvee  SSppeeeeddss 

The diagram below shows all the possible ways of approach and separation 
as seen by someone outside the 2-body system. To work out the relative 
speeds, imagine shrinking and putting yourself inside the system by sitting 
on one of the balls to measure the speed at which the other ball is 
approaching or separating from you.  

Note that v1 and v2 are speeds (positive numbers). Relative speeds must 
also be positive so you always subtract a smaller speed from a larger speed. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RSA=RSS 
equation is 
derived from the 
COM equation 
and the COKE 
equation. 

 

 
 

1221 vvuu




is the vector 
version of 
RSA=RSS 

  

  

 

 
 
 
 
 
 
Key to finding 
relative speeds 
is to imagine the 
measurement or 
perception of 
speed of one 
body from the 
other body. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

& 

Opposite 
directions 

 
add speeds 

Approach 

 
Separation 

 

Same 
directions 

 
subtract 
speeds 

RSA = v1 + v2  RSS = v1 + v2  

RSA = v2 – v1  RSS = v2 – v1  

RSA = v1 – v2  RSS = v1 – v2  

v1 v2 v1 v2 

v1 v2 v1 v2 

v1 v2 v1 v2 
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PPrroobblleemm  SSoollvviinngg 
 
A ball of mass m approaches a second ball of mass 3m moving to the right 
as shown. 

 

After the head-on elastic collision, the second ball has velocity of 2.0 m s
-1

 to 
the right as shown. 

 

Find the velocity of the first ball after the collision. 
 
Solution: 

Step 1 – Understanding the problem 

 Check that the system is not experiencing a net force. In this case, the 
given diagram shows a 2-body system in isolation from any other objects, 
so there are no external forces at all and so the net force is taken to be 
zero. Hence, the COM equation applies here. 

 Next check that the motions are 1D. Here ‘head-on’ collision means that 
the 2 balls approach each other along a line joining their centres of mass. 
This will ensure that they continue to stay along the line after the collision. 
In contrast, a glancing collision as shown below will result in the balls 
moving off the lines they had before collision. 

 
 
 

When motions are 1D, the velocities are all either pointing one direction 
or the opposite direction. This allows us to use +- signs to indicate the 
directions of vectors in the COM and RSA=RSS equations later. 

 Identify whether the collision is elastic or inelastic. Elastic collisions allow 
us to use the COKE and RSA=RSS equations. 

 
Chosen equations: 

 (1) ffii pppp 2121


  COM 

      OR  22112211 vmvmumum


  

 (2) 1221 vvuu


  RSA=RSS (COKE not favoured) 

 

Step 2 – Planning the solution 

 Choose a positive direction for vectors. 

 Assume a velocity direction if any is unknown. 

 Introduce needed variables - let u2 be ball 2’s initial speed and v1 to be 
ball 1’s final speed. It is very important to be aware that we are taking the 
variables u2 and v1 to be speeds(+ve numbers) only while their directions 
are separately indicated by the arrows. 

 A sketch is recommended to help keep track of the choices made: 
 
Assume positive direction is ‘toward the left’. 
Assume the first ball’s final velocity is to the left: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In head-on 
collision the 
bodies’ motions 
stay along a 
single straight 
line. In glancing 
collision, the 
bodies’ lines of 
motion after 
collision will not 
coincide with 
their original 
ones. 
 
Generally for 
elastic collisions, 
COKE equation 
is not favoured 
because of 
greater difficulty 
in dealing with 
squared terms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

m 3m 

5.0 m s
-1

  v1  

m 3m 

8.0 m s
-1

   u2  

Initial   Final  
+ve 

2.0 m s
-1

  

m 3m 

m 3m 

8.0 m s
-1

   

Example 4 
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Step 3 – carrying out the plan 

 Each vector must be substituted with a magnitude accompanied by + or - 

sign for direction. e.g. 1u


= -8 below. 

(1) 22112211 vmvmumum


  COM 

(1.1) m (-8) + 3m (-u2) = m (+v1) + 3m (-5) 
(1.2) 3u2 + v1 = 7 
 

(2) 1221 vvuu


    RSA=RSS 

(2.1) (-8) - (-u2) = (-5) - (+v1) 
(2.2) u2 + v1 = 3 
 
(1.2) - (2.2): 2u2 = 4 
 u2 = 2.0 m s

-1
 

 
Substitute u2 = 2.0 m s

-1
 in (2.2) gives v1 = 1.0 m s

-1
. 

Hence velocity of the first ball after collision is 1.0 m s
-1

 to the left. 
 

Alternative RSA=RSS 

Equation (2) above is strictly speaking not RSA=RSS because the 
subtraction of two velocities is a relative velocity instead of relative speed. 
The method to find RSA and RSS is on pg 11. 
If we use the relative speeds then the presentation will look like: 

(1) 22112211 vmvmumum


    

(1.1) m (-8) + 3m (-u2) = m (+v1) + 3m (-5) 
(1.2) 3u2 + v1 = 7 
 
(2) Relative speed of approach = relative speed of separation 
(2.1) 8 - u2 = 5 - v1   (see pg 11 on finding relative speeds) 
(2.2) u2 + v1 = 3 

 
 

Alternative Working 1 

Let’s consider what happens if the following choices were made: 

 
 

(1) 22112211 vmvmumum


  

(1.1) m (+8) + 3m (+u2) = m (+v1) + 3m (+5) 
(1.2) 3u2 - v1 = 7 
 

(2) 1221 vvuu


  

(2.1) (+8) - (+u2) = (+5) - (+v1) 
(2.2) v1 - u2 = -3 
 
(1.2) + (2.2): 2u2 = 4 
 u2 = 2.0 m s

-1
 

 
Substitute u2 = 2.0 m s

-1
 into (2.2) gives v1 = -1.0 m s

-1
. v1 is a speed and 

is supposed to be positive. Is there something wrong? Yes, the direction 
assumed for v1 is wrong i.e. the negative sign is an indication that the 
assumed direction is wrong. 

Hence velocity of the first ball after collision is 1.0 m s
-1

 to the left. 
 

 

 
Familiarity with 
usage of +- signs 
in relation to 
vector quantities 
is crucial in 
problem solving. 
 
The use of +- 
signs must be 
consistent with 
the directions 
assumed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

m 3m 

5.0 m s
-1

  v1  

m 3m 

8.0 m s
-1

   u2  

Initial  Final  
+ve 
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Alternative Working 2 

Here, we don’t assume a direction for first ball after collision. Thus we leave 

1v


 as a variable with unknown direction and magnitude in the equations. 

 

(1) 22112211 vmvmumum


  COM 

(1.1) m (+8) + 3m (+u2) = m 1v


+ 3m (+5) 

(1.2) 3u2 - 1v


 = 7 

(2) 1221 vvuu


    RSA=RSS 

(2.1) (+8) - (+u2) = (+5) - 1v


 

(2.2) 1v


 - u2 = -3 

 
(1.2) + (2.2): 2u2 = 4 ----- (3) 
 u2 = 2.0 m s

-1
 

 
Substitute u2 = 2.0 m s

-1
 in (2.2) gives 1v


 = -1.0 m s

-1
. Now, the negative 

sign tells us that 1v


 points in the negative direction which is to the left. 

The various alternative workings show the different thinking behind the 
usage of symbols. In math and physics, symbolic presentation is pervasive. 
Failure to understand the subtle difference between writing things one way 
and another is often the cause of much confusion. 
 
 
 
 
Two spheres A and B of mass m move towards each other with speeds as 
shown. 
 
 
 
 
(i) If u1 = 4.0 m s

-1
 and u2 = 2.0 m s

-1
, find the velocity of sphere A when 

sphere B is momentarily at rest. 

(ii) Show that in general, if the spheres have equal masses and the 
collision is head-on elastic, then after the collision each sphere will have 
a velocity which is the other’s initial velocity. 

 
Solution: 

Taking +ve to be rightwards. 

(i) 22112211 vmvmumum


  COM 

m (4) + m (-2) = m vA + 0 

vA = 2.0 m s
-1

 (Note that v1 and v2 can be velocities during collision) 
 

(ii) 22112211 vmvmumum


  COM 

 m u1 + m (-u2) = m (-v1) + m (v2) 
 u1 - u2 = -v1 + v2     ----- (1) 
 
 RSA = RSS 
 u1 + u2 = v1 + v2     ----- (2) 
 
 (1) + (2) gives 2u1 = 2v2  or  v2 = u1 
 (1) - (2) gives 2u2 = 2v1  or  v1 = u2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Most authors 
use v for speed 

and v


for 
velocity. 
However, some 
people use v to 
mean either and 
it is up to 
readers to figure 
out what each 
symbol 
represents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Outcome of 
head-on 
collisions 
between 
identical spheres 
is sometimes 
assumed to be 
well-known by 
students. 

m 3m 

5.0 m s
-1

  

m 3m 

8.0 m s
-1

   u2  

Initial  Final  
+ve 

Example 5 

 

m 

u1   u2  

m A B 

m 

v1   v2  

m A B 

Assumed outcome 

Shown 
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A and B are two discs gliding freely on an air-table. A has mass 100 g while 
B has mass 200 g. Their velocities are as shown. 

 
The discs’ rims are wrapped with velcro such that when they collide at point 
P, they stick and move off together. Find their common velocity after collision. 
 
Solution: 

Discs stick together after collision  perfectly inelastic collision. 

Net force = 0  total momentum pTi before = total momentum pTf after.  
A vector diagram is needed. 

 
pTi

2
 = pA

2
 + pB

2
 - 2pApB cos150  Using cosine rule 

pTi
2
 = (0.3)

2
 + (0.4)

2
 - 2(0.3)(0.4) cos150 

pTi = 0.677 kg m s
-1

 

pTf = pTi (because COM)   

(mA + mB)vf = 0.677 vf is common speed after collision 
vf = 2.25 m s

-1
 

sin150sin

BTi pp



 Using sine rule 

 = 17 

 common velocity of discs after collision is 2.3 m s
-1

 at an angle of 17 
from the x-direction. 
 
 
 
The velocities of two identical spheres A and B before collision are along the 
x-axis as shown. After collision, A’s velocity is in the y-direction. 

(i) Find the speed vB. 

(ii) Determine if the collision is elastic.  

 
Solution: 

(i) Net force = 0  momentum must be conserved in both x & y directions. 

Along x: Total momentum before = 2m,  x component of Bv


 = 2 m s
-1

 

Along y: Total momentum before = 0,  y component of Bv


 = 1.7 m s
-1

  

vB = 22 7.12  = 2.6 m s
-1

 

(ii) Initial total KE = ½m(4
2
 + 2

2
) = 10m. Final total KE = ½ m(1.7

2
 + 2.6

2
) = 

4.83 m. Since the final KE < initial KE, collision is inelastic. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
For inelastic 
collisions, COKE 
and RSA=RSS 
cannot be used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In a glancing 
collision, motions 
will be 2D. The 
approach is to 
select two 
perpendicular 
directions (x, y) 
and apply the 
same analyses 
separately to 
each direction 
just like in 
projectile motion. 
 
 

y 

x 

A 

B 

4.0 m s
-1

 

m 

m 

2.0 m s
-1

 

Before 

A 
B 

1.7 m s
-1

 

vB 

After 

A 

B 

pA 

200 g 

100 g 
pB 

pA 

pB 

pTi 

30  
x 

A 

B 

3.0 m s
-1

 

2.0 m s
-1

 200 g 

100 g 
30 

P 

Example 6 

 

Example 7 

 


