Dynearics

In Kinematics, we looked at velocities, displacements and trajectories for a
body with acceleration at constant direction and magnitude. In Forces, we
looked at the different kinds of forces and their characteristics. Now, in
Dynamics, we are interested to identify forces at work in a given situation
and figure out how the net force determines the acceleration and thus the
type of motion or the lack of motion.

When body A exerts a force on body B, body B will exert an equal but
opposite force on body A.

The pair of equal and opposite forces is called an action-reaction pair or the
third law pair. The law essentially says that all forces come in pairs. Hence if
Earth pulls on you with a gravitational force, you must be pulling on Earth
with the same type of force i.e. gravitational.

What the third law says about the action and reaction pair of forces:

1. they have equal magnitude
2. they have opposite directions
3. they act on different bodies
4. they are of the same type

Every body continues in its state of rest
or of uniform motion in a straight line
until it is caused to change by a net force.

The breakthrough significance of this law may be harder to appreciate in this
modern age than when it was first put forth in the 17" century by Newton.
Back then, people did not have our present understanding of forces. They
attributed the eventual stoppage of everyday moving objects to their inherent
nature instead of attributing to frictional forces at work.

Today, it is much easier for us to understand that if we remove all forces
acting on a body, it will stay at rest if it were originally at rest and it will move
with constant speed in a straight line if that was what it was doing before.

However, two aspects of the law are still easily overlooked. The first
concerns ‘uniform motion in a straight line’ which means constant velocity or
constant speed and constant direction. If a body moves with constant speed
in a circle, it in fact has a changing velocity because the direction of the
velocity vector changes continuously and that requires a net force.

The second aspect is the ‘net’ force. Occasionally, some people mistake the
law to mean if ‘no forces’ act on a body, then there will be no change to the
motion. In fact, ‘no forces’ is not equivalent to ‘no net force’.

Inertia

The First Law also implies that objects have a tendency to remain at rest or
in constant velocity motion i.e. the tendency to resist change in motion. This
tendency is called inertia and the first law is also called the Law of Inertia. It
turns out that a measure of inertia is just mass. Hence a more massive
object has greater tendency to stay at rest or it is harder to get it moving.
Similarly, a more massive object with a certain velocity has greater tendency
to maintain that velocity or it is harder - more force required - to cause its
velocity to change, be it magnitude or direction.

Newton’s Third
Law states that
when body A
exerts a force on
body B, body B
will exert an
equal but
opposite force
on body A.

Newton’s First
Law states that
every body
continues in its
state of rest or of
uniform motion
in a straight line
until it is caused
to change by a
net force.

A change in
motion can
mean a change
in the magnitude
or direction of
velocity.

Inertia is the
tendency to
resist a change
in motion.
Mass is a
measure of
inertia.
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The driver of a truck carrying logs as
shown in Fig. 3.1 must be aware of
the logs’ inertia because it is a matter
of life and death. The driver must
secure the logs properly or else
during sudden braking, the logs may
Fig. 3.1 not stop while the truck has stopped.
The driver may then be crushed by
the forward moving logs. Such tragic events happen because the massive
logs have great inertia and so they require a large net force to stop. When
not properly secured, it means there is insufficient force available to bring the
logs to a stop within the short sudden braking time.

You might have experienced being thrown
towards the right side when the bus you were in
suddenly swerved to the left. This also can be
explained using the law of inertia or Newton’s
First Law. Assume that before the bus turned,
you were travelling in a straight line and thus
had the tendency or inertia to continue moving
forward in a straight line. When the bus turned
left, your lower body was in contact with the
seat and so the seat dragged your lower body
leftwards via friction force. Meanwhile your
upper body didn’t receive the help of such an
external force except the sideways pull from your lower body. As a result,
your upper body tended to follow the original straight line motion and so
tilted to the right. If the seat were very smooth such that there was very little
friction, you would find your whole body sliding towards the right until you hit
the right side body of the bus and the normal contact force from the bus then
provided a net force to bring about a change in direction of your velocity.

Fig. 3.2

System

In physics, clearly identifying the system or the object under study is very
important. ldentifying a system is like defining a problem. An ill-defined
problem or system makes it difficult or impossible to have a clear
understanding of the problem or system. Also, an ill-defined problem lacks a
clear boundary and so we cannot clearly say whether we have solved it or
not because we do not quite know the actual scope of the problem. The
principle of clear definition of problem or system is in fact very general and
applicable to many non-physics contexts.

Whoever best describes the problem is the one most likely to solve it.
Dan Roam

If we can really understand the problem, the answer will come out of it,
because the answer is not separate from the problem.
Jiddu Krishnamurti

While it is useful to set up a boundary for a problem or system, we must not
forget that what is inside may interact or have mutual influence with what is
outside. For a system in physics, try and imagine a boundary enclosing the
object of interest. Forces and energies originating from outside this
enclosure are considered external. A system can have quantifiable
properties like mass, energy, charge, pressure etc. The properties of the
system can often be changed through interactions with the external world or
they can change due to some internal processes.
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The larger the
mass, the
greater the
tendency to
resist a change
in motion.

Clearly
identifying a
system or object
of interest is
critical to
analyses and
problem solving.
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Free Body Diagram

In most given situations where we are interested to analyse the connection
between the type of motion and the forces at work, we need to be clear

which object or part of the object we are interested in i.e. which is the system.

To help us to focus only on the system, we make a sketch of the system
together with the forces on it. Such a sketch is called a free body diagram.

For example, in Fig. 4.1, a boat is
travelling with constant velocity. If
we are interested in the forces and
their moments on the boat, then we
would sketch Fig. 4.2, which shows
. that there are both clockwise and

Fig. 4.1 anti-clockwise moments. However,
in many cases when we do not need to know the points of application of the
forces, we can represent the system by a circle or box and focus solely on

showing the directions and relative magnitudes of the forces as shown in Fig.

4.3.
upthrust upthrust
engine
viscous thrust
force .
. viscous
engine force
thrust
weight weight

Fig. 4.2 Fig. 4.3

Momentum

Before discussing Newton’s Second Law, we need the concept of
momentum.

Linear momentum of a body is defined as the product of
its mass and velocity. p=mv

It is a rule that multiplying a vector by a scalar gives a vector. Mass m is a
scalar while velocity v is a vector, hence momentum p is a vector.

The reason why mv is called linear momentum is because there is also
angular momentum. When not stated, the word momentum is by default
referring to linear momentum.

The insensitivity to the vector nature of quantities like velocity and
momentum is a major cause of many mistakes made by students. Many
difficulties arise from the inability to work out the change of a vector quantity.
For example, consider a ball with momentum 4 kg m s™ to the right colliding
with a wall and rebounding with a momentum of 3 kg m s™ to the left, what is
the change in its momentum? If your answer is ‘decrease of 1 kg m s then
you need to review your concept of vector subtraction. The correct answer is
7 kg m s™ to the left’. Another example below shows how Ap is obtained.

. : Ap
Given Pi .

initial and The change in ————
final rgom_entum is B

momenta: B Ap =p; +(-pi) - Py Pr

Fig. 5.1

A free body
diagram shows
the forces acting
on an identified
system.

Whether
representing a
system with a
circle or a fairly
accurate sketch
depends on what
needs to be
shown.

Linear
momentum of a
body is defined
as the product of
its mass and
velocity.

p=mv

It is important to
be sensitive to
the vector nature
of momentum
and ‘change of
momentum’.

Ap = ps +(—p;)
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Newton’'s Second Law

The law states that the rate of change of momentum of a body
is proportional to the net force acting on it

and has the same direction as the force. Ifnet = (;—?

For problem solving, it is useful to be familiar with other versions of the

= dp .
F.. = —— equation:
net = ¢ q

dv -
1. Fet = ma =ma since p=mv

= A = _ _
2. Average net force, Fo = ?Ito or F oAt = Ap = MAV

p A
Average force for At =t, - t;
is = ﬂ
Ap At
Ap3
dp
Instantaneous force — at t3
At dt
> . _ Apg
t t t Is= —
1 3 2 t At3
At
Fig. 5.2

Directions of Fye, Ap, Av, a

It is important to see that ‘rate of change of momentum’ is a vector. Rate of
change of momentum = Ap/At is a vector because a vector Ap divided by

a scalar At gives a vector. Hence based on the relation F_, =dp/dt, the

direction of F,

et Must be the same as the direction of Ap.

Let’s look again at Fig. 5.1. The initial and final momenta could be that of a
billiard ball just before and after colliding into a wall at one side of the table.
The directions of these momenta are also the directions of the initial and final
velocities since p=mv .

o D —_
. p Ap
Given i .
initial and Thechange in ¢
final momentum is )
momenta: Ps Ap = ps +(—P;) -P, Ps

Fig. 5.3
The vector diagram on the right shows the direction of Ap, which must be

the direction of the net force acting on the ball. In this case, the net force is a
normal contact force by the table on the ball.

Based on the relations F,., =dp/dt=m(dv/dt)=ma, we can in fact say

that the directions of F

wet» AP, AV and a are always the same.

Newton’s
Second Law
states that the
rate of change of
momentum of a
body is
proportional to
the net force
acting on it and
has the same
direction as the
force.

- dp
F = —_—
net dt
Also,
= dv -
Fret =mM——=ma
net dt
- Af)
ave Fop=—
net At

Second law is
used to define
force:

Force on a body
is defined as the
rate of change of
momentum of
the body in the
direction of the
force.

Based on the

relations

Foet =dp/dt
=m(dv /dt)
=ma

the directions of

Frot» AP, AV

and a are

always the same.
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Impulse-momentum relation Fpe At = Ap

When the second law is written as F,,At = AD=mAV , it is also known as

the impulse-momentum relation. When you apply a net force F. for
duration of time At on an object, it is said that you have applied an impulse of

IfnetAt on the object. As a result of that impulse, the momentum of the object

would have changed by Ap or mAv . Put in another way, when a net force
acts on an object, its velocity must change in either magnitude or direction or
both. This is what the first law is saying but the second law says the same

and more by quantifying and relating the quantities F..,, At, mand Av .

net?’

Note that F

et Must either be an average value or a constant value during At.

If F,,e; Were not constant as shown in the following graph, then the impulse
is equal to the area under the graph.

- A
Foet Total impulse during T = area B -

area A

(Average Ifnet )T =areaB -area A

0 P>
y Tt .
Average F.,., =netarea/T

net

Fig. 5.4

Imagine that 5 bullets are fired from a machine gun in quick succession and
each experiences a horizontal stopping force (Ifnet) exerted by a wall and
the forces are plotted on a time axis:

F

net

boanad

Fig. 5.5

The area A for each bullet is the impulse exerted by the wall on the bullet to
stop it. By Newton’s Third Law, the impulse (magnitude only) exerted by
each bullet on the wall is also A. The total impulse is thus 5A over the time
duration T. The average force exerted on the wall by the bullets over time T
is thus = 5A/T or the total momentum change of the 5 bullets divided by the
time T.

The skilful use of second law to solve problems requires the following
competencies:
l. mastery of general problem solving approach
Il clear identification of system
M. familiarity with the types and characteristics of forces
V. correct understanding and handling of vectors

Example 1

A box of weight W is resting on a slope of
inclination @ and we want to find the friction force
on the box.

What would be the first thing we do?

Fig. 6.1

FretAt is called
impulse (vector).

FretAt = AP = MAV
is the impulse-
momentum
relation.

FretAt = AD is
true only for
constant net
force or average

net force. If Fq,

is not constant,
then impulse and
momentum
change are both
given by the
area under the

F. —t-tgraph.
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If we can really understand the problem, the answer will come out of it,

because the answer is not separate from the problem.
Jiddu Krishnamurti

The first thing to do is to understand the problem. In this example, the word
resting in ‘weight W resting on a slope’ is a word that holds key meaning.
The word means that the box has zero velocity and it continues to be at rest
at subsequent times i.e. it has no change in velocity and so it has zero

acceleration. Zero acceleration in turn implies that F_, =ma=0. Now
F.. =0 is the equation we can use to find friction force!

Key words like ‘resting’ could have been easily overlooked without enough
practice or exposure to develop the sensitivity. That sensitivity in turn must
rest on solid conceptual understanding of the word and its associated ideas.

In general, a problem of finding an unknown almost always involves using an
equation or equations. The choice of each equation will depend on the given
situation since each equation is only applicable to a certain context. With
practice and understanding, you will be able to associate the situation in a
problem to relevant equations.

In this current example, it is not difficult to see that
the system should be the box after we come to the
conclusion that it must satisfy the equation

F.. =0. Since the situation is simple - only a box

and a slope - a free body diagram would not be
necessary. Instead, the forces on the box can be
directly drawn on the diagram as shown in Fig. 6.2.

The equation F_ =0 in this context means

N +W +Fg =0 which does not mean that the addition of the
magnitudes of the forces is equal to 0. It means that if we
were to join the vectors head to tail, they will form a closed
triangle without any resultant vector as shown in Fig. 6.3.
Based on the triangle in Fig. 6.3, we can then deduce that
||5R| = |VV|sin0 or Fr = W siné.

If the problem had involved the same box sliding down the slope at constant
velocity, then the answer Fr = W sind will still be valid. This is because

‘constant velocity’ implies F_, =0 also and all the steps to arrive at the

answer will be the same. For comparison, this problem has also been solved
by two methods under the chapter on Forces in section 12 on Equilibrium.

Example 2

A box of mass m has acceleration a down a slope
of inclination 6. Find the friction force on the box.

[ Similar to Example 1 but F, #0 ~
. . - 17
mg v Given a is downslope = F_ N
Fig. 6.4 downslope too. B
Vector diagram now looks as shown W
in Fig. 6.5.
E
Y A net
Fr
Fig. 6.5

Part of the
approach
towards any
problem is to
always
understand the
problem.

That
understanding
will naturally
allow you to
draw on relevant
knowledge for
problem solving.

In physics
problems, being
clear about the
system to
analyse is critical.
In the usage of
the second law,
the lack of a
clear object of
interest would
impact the
correct
identification of
relevant forces
contributing to

F

net *
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Focus on magnitudes in Fig. 6.6.

_ . . Wsing, - |
Since no acceleration perpendicular to 9
the slope, the magnitudes N = W cosé. Y N
On the other hand, second law requires w
Fret = ma downslope, <4
so W sin@- Fr = ma, W cos?
.- FrR=Wsin@-ma /E;t
YF

Fig. 6.6 R

Example 3

A boy stands on a weighing scale inside an elevator that is moving
upwards and slowing down at a rate of 2 m s™. If the boy’s mass is 50
kg, what is the reading on the scale?
Firstly, understanding the problem:

1. “slowing down” = decelerating = F,, and a both opposite in

direction to that of v (see Kinematics pg. 3). .. F,'s direction is
downward & ..Wg > Ng.

2. Scale works because of force pressing against it i.e. it measures the
normal contact force which is equal and opposite to N and
translates it into reading of mass in kg.

The system is identified to be the boy because a)
his weight is given and b) the scale measures his
normal contact force which we want to find.

The force diagram is as shown in Fig. 6.7. v T

Using the equation F,,, =ma

W, +N, =ma

Taking downward as positive and replacing each YW
vector in the above equation with a direction (+-
sign) and a magnitude,
(+mg) + (-N) = m(+a)
N =mg - ma
=50(9.81 - 2)
=390.5N
This force corresponds to a mass of 390.5/9.81 = 39.8 kg
.. the reading on the scale is 39.8 kg

If this problem had the elevator moving upwards and speeding up, then N >
W. The weight does not change as m and g are constant. N is the one that
can change its magnitude and thus the scale reading will be different
depending on whether the acceleration vector is upward or downward.

The total momentum of a system remains constant
provided no external net force acts on the system.

The above is called the Principle of Conservation of Momentum.

From the second law F,, :%, if the net force on a system is zero, it

follows that the rate of change of momentum must be zero, which just means
that the momentum of the system does not change with time.

The Principle of
Conservation of
Momentum
(PCOM) states
that the total
momentum of a
system remains
constant
provided no
external net
force acts on the
system.
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The principle applies to a system of a single body or a collection of bodies.
For a collection of bodies, the total momentum must be found by adding the
individual momenta as vectors.

The principle is one of the most universal in physics and there has not been
any situation in which the principle is not applicable. Below are some
examples of how the principle is applied to arrive at the conclusion of
whether momentum of the system is constant or not.

Situation System System’s momentum
Ball Ball's momentum is not
n constant because there is mostly
A ball N a net force acting on it. Net
bouncing on W force is weight when ball is in the

air. Net force is the resultant of
the normal contact force and

the floor. q,_

W weight when on floor.
An ice hockey Puck
puc.k sliding N Assume no friction. No net force
horizontally ; X
across the ice both vertically and horizontally so
; — the puck moves with constant
rink at
momentum.
constant B
velocity. W

Assume astronaut-spanner
system does not experience a
net force such as gravitational

pull from a nearby planet. Though
the astronaut and spanner
individually undergoes a change
in momentum during the throw,
the total momentum of the
system is constant at all times.

An astronaut
throws a
spanner.

In reality, it is often very difficult to have zero net force on a system. Hence,
we often simplify our analyses by ignoring forces that are much smaller
compared to the others e.g. the friction on the ice hockey puck. Recall that
FretAt = Ap, if Free and At are both small, the effect i.e. momentum change,
will be small.

Momentum Conservation

In the previous section we saw that a system with zero net force from its
surroundings must have constant or conserved momentum. For a 2-body
system with zero net force, the individual bodies can interact by exerting
forces on each other and hence change their momenta but the system as a
whole must have constant momentum. We shall derive the equations
describing reflecting this outcome.

For a start, we will look at situations involving an isolated system of 2 bodies
free from any influence or forces from the surrounding.

Page 8
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valid for any
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The first example involves 2 bodies moving along the same straight line,
approaching each other, collide and then either separate or move off
together:

—_—
Before collision O ()

I:20nl e e I:10n2
Y4 Y

During collision

— — ->
After collision O O OO
Separate Stuck

Fig. 8.1

A second example involves 2 bodies initially at rest together but later, due to
events such as the release of a compressed spring or an explosion, they
separate:

< —_— ->
> = —

Body 1 Body 2 Body 1

Body 2

Bullet ejected from toy gun
using a compressed spring

Gas ejected from rocket at high
speed when fuel burns and expands

Fig. 8.2

In both examples, during the interaction or collision, the 2 bodies exert equal
but opposite forces on each other (Newton’s third law) for the same duration.

The forces they exert on each other
typically vary as in Fig. 8.3. However, we
will simplify things by using a constant
average force <F> in the following analysis.

Due to our assumption that there is
negligible or no external forces, the only
forces are the pair of equal(magnitude)
and opposite(directions as indicated by +- Fig. 8.3
signs) forces between the two bodies:

—~ Vv

By Newton’s 3" law, <F>, =-<F>

20m =

2ot At =—<F >,

=| Apy=-Ap,
The conclusion is that in the type of interactions considered, the momentum

changes of the 2 bodies are equal in magnitude but opposite in direction.
Furthermore,

lon2

Same duration of action so <F >

At

Using Newton’s 2™ law,

APy =—Ap,
= Py — Py =—(P2r —P2i)

=1| Py +Par =Py + Py |

The last line says that the total momentum of the 2 bodies finally (at any later
time) is the same as the total momentum of the 2 bodies initially (at an
earlier time). In other words, the momentum of the system is conserved as
expected of a system with zero external net force.

In our derivation, we considered situations with no external forces but what if
there are external forces? If external forces are considered, as long as they
add up to zero, the momentum of the 2 body system will still be conserved.

In a system of 2
colliding bodies
or of repulsive
separation of a
body into 2, if
there are no
external forces
on the system,
the equations

hold:

'f20n1 = _IflonZ
FoAt = —F, ,At
= Ap, = —-Ap,

= Py — Py = (P — Pa)
= Py + Py =Py + Py
The last line

being the

conservation of
momentum

equation (COM).
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Elastic and Inelastic Collisions
In elastic

collision: total
kinetic energy
before = total
kinetic energy

Collisions can be classified as elastic or inelastic:

An elastic collision is one where the total kinetic energy of the bodies
before collision is equal to the total kinetic energy after collision.

1 1 1 1 . .
—muf +=myus = =myv5 +=myv3 after collision.
2 2 2 2 . .
In inelastic
collision: total

An inelastic collision is one where the total kinetic energy of the bodies

SO L - kinetic ener
before collision is not equal to the total kinetic energy after collision. gy
1 before # total
2

1 1 1 S
Zmuf +=myul = =myvZ +=myvi kinetic energy
2 2 2 2 after collision.

An elastic object is one that is able to return to its original shape after
deformation. This elasticity accounts for the conversion of kinetic energy to

: . X - Colliding bodies
elastic potential energy during collision and the subsequent reverse

! . 2. - . separate =
conversion. This elasticity or the tendency for the colliding objects to push elapstic or
back after deformation also explains why elastic objects separate after inelastic

collision.
Bodies stuck
together <
perfect inelastic.

The following diagram shows the relationship between the type of collision
and whether the colliding bodies separate after collision:

Inelastic
_ A
/ D Conservation of
| KE before = KE after KE before = KE after KE in elastic
\ ~ N ] collisions doesn’t
g e apply during
Perfectly Inelastic but not Elastic collisions.
inelastic completely or perfectly
H_}\ _
——
stuck separate

Elasticity comes in varying degrees. Hence an elastic collision will have
equal kinetic energies before and after collision. An inelastic collision in
which 90% of the original total kinetic energy is retained after collision is
closer to an elastic collision than to a perfect inelastic collision. In reality,
there are very few elastic collisions as most collisions involve the loss of
some of the initial total KE.

Sometimes it is said that ‘KE is conserved in elastic collisions’ which is
inaccurate. It is best not to say that because the ‘conservation’ of KE is only
limited to before and after collision. During collision, the total KE of the
system is definitely not the same as before collision because some KE has
been converted to elastic PE or other forms of energy.

It is useful to think of non-collision type of interactions, such as the rifle-bullet
and the rocket-exhaust examples, as inelastic because they result in final KE
of the system being greater than the initial KE.

Relative Speeds - RSA=RSS

Just for emphasis, Section 8 deals with systems isolated from external
forces and hence F,, = 0 and so the momentum of the system is conserved
at all times. In addition, we only consider a simple 2-body interaction
involving 1-dimensional motions. It may seem useless to study such a
narrowly defined scenario but the idea is to learn some general principles
that can be extended to 2D/3D motions and applicable approximately to real
life situations.

© 2013 Yeow Kok Han Page 10



In our narrowly defined context, the conservation of
momentum (COM) equation holds:

Py + Pa2i = Py + Pay

In addition, if the interaction is elastic, the conservation of

KE (COKE) equation applies: &

L2 +imuz =Imyz+imoy2
2 1“1 2 242 2 1vVi 2 2V 2

It can be shown that a third equation can be derived from
the above 2 equations. This third equation states that
relative speed of approach of the 2 bodies is equal to
their relative speed of separation.

RSA = RSS

The version of RSA=RSS in terms of relative velocities is U; —U, =V, —V;.

Using this alternative version requires caution in remembering the order of
the subscripts and in handling vectors properly(using +- signs).

To sum up, for elastic interactions, we can use any two of the three
equations above to solve problems. However, the recommended way is to
use COM and RSA=RSS, avoiding COKE because a quadratic equation is
generally more troublesome to handle. For inelastic interactions, only the
COM equation can be used.

Finding Relative Speeds

The diagram below shows all the possible ways of approach and separation
as seen by someone outside the 2-body system. To work out the relative
speeds, imagine shrinking and putting yourself inside the system by sitting
on one of the balls to measure the speed at which the other ball is
approaching or separating from you.

Note that v; and v, are speeds (positive numbers). Relative speeds must
also be positive so you always subtract a smaller speed from a larger speed.

\41 Vo Vi Vo
— +— <+ — Opposite
o O o O directions

U
add speeds

RSA =1 +vg RSS =1 + V4

V1 V2 Vi V2 \
«— «— —> —
o @ o @
RSA = RSS = Same
directions
U
subtract
speeds
Vi Vo Vi Vo
— —> — «—
o @) o O
RSA = RSS = )

RSA=RSS
equation is
derived from the
COM equation
and the COKE
equation.

Gl - l]2 = \72 —\71
is the vector

version of
RSA=RSS

Key to finding
relative speeds
is to imagine the
measurement or
perception of
speed of one
body from the
other body.
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Problem Solving

Example 4

A ball of mass m approaches a second ball of mass 3m moving to the right
as shown.

8.0ms™
_

&
After the head-on elastic collision, the second ball has velocity of 2.0 m st to
the right as shown.

20ms*
—

® O

Find the velocity of the first ball after the collision.

Solution:

IStep 1 — Understanding the problem|

e Check that the system is not experiencing a net force. In this case, the
given diagram shows a 2-body system in isolation from any other objects,
so there are no external forces at all and so the net force is taken to be
zero. Hence, the COM equation applies here.

e Next check that the motions are 1D. Here ‘head-on’ collision means that
the 2 balls approach each other along a line joining their centres of mass.
This will ensure that they continue to stay along the line after the collision.
In contrast, a glancing collision as shown below will result in the balls
moving off the lines they had before collision.

When motions are 1D, the velocities are all either pointing one direction
or the opposite direction. This allows us to use +- signs to indicate the
directions of vectors in the COM and RSA=RSS equations later.

¢ Identify whether the collision is elastic or inelastic. Elastic collisions allow
us to use the COKE and RSA=RSS equations.

Chosen equations:
1) Pi + P2 =Py +Pyr COM

(2) U; —U, =V, —V; RSA=RSS (COKE not favoured)

IStep 2 — Planning the solution|

e Choose a positive direction for vectors.

e Assume a velocity direction if any is unknown.

e Introduce needed variables - let u, be ball 2’s initial speed and v, to be
ball 1’s final speed. It is very important to be aware that we are taking the
variables u, and v, to be speeds(+ve numbers) only while their directions
are separately indicated by the arrows.

e A sketch is recommended to help keep track of the choices made:

Assume positive direction is ‘toward the left’.
Assume the first ball’s final velocity is to the left:

80ms™ U Vi 50ms™
—> «— —_—
+ve
Initial <— Final

In head-on
collision the
bodies’ motions
stay along a
single straight
line. In glancing
collision, the
bodies’ lines of
motion after
collision will not
coincide with
their original
ones.

Generally for
elastic collisions,
COKE equation
is not favoured
because of
greater difficulty
in dealing with
squared terms.
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IStep 3 — carrying out the plan|

Each vector must be substituted with a magnitude accompanied by + or -
sign for direction. e.g. U, = -8 below.

(1) myuU; +MmyU, = My +MyV, COM
(1.1) m (-8) + 3m (-up) = m (+vy) + 3m (-5)
(12) 3U2 +Vv; = 7

(2.1) (-8) - (-uz) = (-5) - (+vy)
(22) U +vi=3

(12)-(2.2): 2u,=4

U,=2.0ms™

Substitute u, = 2.0 m s™in (2.2) gives v; = 1.0 m s™.

Hence velocity of the first ball after collision is 1.0 m s to the left.

IAlternative RSA=RSS|

Equation (2) above is strictly speaking not RSA=RSS because the
subtraction of two velocities is a relative velocity instead of relative speed.
The method to find RSA and RSS is on pg 11.

If we use the relative speeds then the presentation will look like:

(1) mlljl + mzljz = m1\71 —+ m2\72
(1.1) m (-8) + 3m (-uz) = m (+vy) + 3m (-5)
(1.2) 3u, +vi =7

(2) Relative speed of approach = relative speed of separation
(2.1) 8-u,=5-v; (seepg 1l on finding relative speeds)
(2.2) U, +v; =3

IAlternative Working 1|

Let’s consider what happens if the following choices were made:

80ms™ U Vi 50ms™
_ —_— = R
& &
Initial — Final
(1) mlljl =+ mzl:iz = m1\71 =+ m2\72

(1.2) m (+8) + 3m (+uy) = m (+v4) + 3m (+5)
(12) 3U2 -V = 7

2 Up—Up =Vy —Vy

(2.1)  (+8) - (+Up) = (+5) - (+v4)
(2.2) Vi-Up=-3

1.2)+((2.2): 2u=4

U, =2.0ms™

Substitute u, = 2.0 m s™ into (2.2) givesv; =-1.0 m st v isa speed and
is supposed to be positive. Is there something wrong? Yes, the direction
assumed for v, is wrong i.e. the negative sign is an indication that the
assumed direction is wrong.

Hence velocity of the first ball after collision is 1.0 m s to the left.

Familiarity with
usage of +- signs
in relation to
vector quantities
is crucial in
problem solving.

The use of +-
signs must be
consistent with
the directions
assumed.
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IAlternative Working 2|
Here, we don’t assume a direction for first ball after collision. Thus we leave
v, as a variable with unknown direction and magnitude in the equations.

80ms™ U, 50ms™
 — —> —_—
: +ve :
Initial —> Final

(1.1) m (+8) + 3m (+u;) = mv; + 3m (+5)
(1.2)  3u,-V, =7

(2) 'jl _02 :\72 _\71 RSA=RSS
(2.1)  (+8) - (+uy) = (+5) - v,

(22)  Vy-Up=-3

1.2)+(2.2): 2u;=4 - 3)
U =2.0ms™

Substitute u, = 2.0 m s™ in (2.2) gives v, = -1.0 m s™. Now, the negative
sign tells us that v, points in the negative direction which is to the left.

The various alternative workings show the different thinking behind the
usage of symbols. In math and physics, symbolic presentation is pervasive.
Failure to understand the subtle difference between writing things one way
and another is often the cause of much confusion.

Example 5

Two spheres A and B of mass m move towards each other with speeds as

shown. Uy Uy

A @ @ s

() Ifu =40mstandu,=20ms" find the velocity of sphere A when
sphere B is momentarily at rest.

(i) Show that in general, if the spheres have equal masses and the
collision is head-on elastic, then after the collision each sphere will have
a velocity which is the other’s initial velocity.

Solution:

Taking +ve to be rightwards.

(|) mlljl + mzuz = m1\71 + m2\72 COM
m@)+m(-2)=mvy+0
va=2.0m st (Note that v; and v, can be velocities during collision)

(") mlljl + m202 = m1\71 + m2\72 COM Vl V2
mu; + m (-uz) =m (-vq) + m (vo) D —
Up-Up=-Vy +Vy,  =---- (1) A @ @ B
RSA = RSS Assumed outcome
Uy +Uy=Vy +Vy  ----- (2)

(1) + (2) gives 2u; = 2v, or V, = U, }
(1)-(2) gives 2u, =2v; Of Vi = U, Shown

Most authors
use v for speed
and v for
velocity.
However, some
people use v to
mean either and
itis up to
readers to figure
out what each
symbol
represents.

Outcome of
head-on
collisions
between
identical spheres
is sometimes
assumed to be
well-known by
students.
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Example 6

A and B are two discs gliding freely on an air-table. A has mass 100 g while
B has mass 200 g. Their velocities are as shown.

3.0ms* P
100 s y
1@ 300 U
200 g 20ms™

The discs’ rims are wrapped with velcro such that when they collide at point

P, they stick and move off together. Find their common velocity after collision.

Solution:

Discs stick together after collision = perfectly inelastic collision.
Net force = 0 = total momentum py; before = total momentum p; after.
A vector diagram is needed.

Pa
100 g @—» Pri
Pe P
/ 6,13

200 g Pa X

pTi2 = pA2 + p32 - 2paps €0S150°
pr = (0.3)% + (0.4) - 2(0.3)(0.4) cos150°
pri=0.677 kgms™

Using cosine rule

pr = pri (because COM)
c.(ma + mg)v; = 0.677  v¢is common speed after collision
vi=2.25ms*

: Pri__ _ _pB Using sine rule
sin150° siné@
0=17°

. common velocity of discs after collision is 2.3 m s™ at an angle of 17°

from the x-direction.
Example 7

The velocities of two identical spheres A and B before collision are along the
x-axis as shown. After collision, A’s velocity is in the y-direction.

() Find the speed vg.
(i) Determine if the collision is elastic.

-1
40ms™ 1.7ms

m @ m y

20ms’ VB ‘
X

(i) Netforce = 0 = momentum must be conserved in both x & y directions.
Along x: Total momentum before = 2m, .. x component of v, =2ms™

Along y: Total momentum before =0, .. y component of v = 1.7 m s*

Before After
Solution:

vg= V22 +1.72=26ms*

(i) Initial total KE = ¥2m(4® + 2%) = 10m. Final total KE = %2 m(1.7° + 2.6°) =
4.83 m. Since the final KE < initial KE, collision is inelastic.

For inelastic
collisions, COKE
and RSA=RSS
cannot be used.

In a glancing
collision, motions
will be 2D. The
approach is to
select two
perpendicular
directions (x, y)
and apply the
same analyses
separately to
each direction
just like in
projectile motion.
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