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1 Importance of Measurement

Scientific knowledge is powerful because it is not just untested theory and
hypotheses. Scientists demand that the theories be supported with empirical
evidence or measurements. For example, Einstein’s General Relativity
theory suggested that gravity can bend the path of light but our ultimate
confidence in the theory is whether the bending can be measured and
checked against the amount predicted by the theory.

Measurement is about quantifying things and the ability to quantify things
allows calculations, analyses and deductions which in turn lead to new
knowledge or theories. Once a theory is well supported by empirical data, it
then can be used for predicting outcomes or results. To understand what the
big deal about prediction is, let’s just consider the construction of a high rise
building which costs millions of dollars. An architect will carry out calculations
to make sure the designed building can withstand the expected loading and
maybe possible earthquake. Those calculations are done using theoretical
formulae that have been verified with prior measurements!

2 Sl System of Quantities & Units

For measurements to be useful, they need to be expressed in terms of

appropriate units which are internationally accepted. * see Joint Committee for Guides
in Metrology (JCGM), International Vocabulary of Metrology, Basic and General Concepts and Associated
Terms (VIM), Ill ed., Pavillon de Breteuil : JCGM 200:2012.

International System (SI) of

Quantities Units

7 base quantities which cannot be
defined in terms of other
quantities:

length, mass, time,

7 base units corresponding to the
base quantities:
metre (m), kilogram (kg),
second (s), ampere (A),

electric current,
thermodynamic temperature,
amount of substance,

kelvin (K), mole (mol) and

candela (cd)
(Note: candela is not required in

luminous intensity syllabus)

Derived units are defined in terms
of the base units. The notation*
[Q] means ‘unit of Q’:

Derived quantities are defined in
terms of the base quantities. e.g.

Force F =ma

but a = Av [F] = [ma]

At = [m] [a] = [m] [v/]
and v = 28 = [m] [s/t)[]

At =kgms?

so F is finally defined in terms of ) ; P
base quantities: length, mass, Derived unit kg m s™ is given a
time. convenient short form N (newton).

The formulae in the syllabus are all coherent with the Sl system unless
otherwise stated. That means the equations used to relate quantities, e.g. F
= ma, assume Sl units are used. Therefore, values substituted must be in SI
units. In addition, values with multiple or sub-multiple of base units must
include the appropriate multiple factors.

Note also that quantities are always defined in terms of quantities and units
are always defined in terms of units i.e. quantities and units are different
entities. Hence it would be wrong to define speed(a quantity) as ‘the
distance(a quantity) travelled per second(a unit)’.

There are 7 base
guantities and
corresponding
base units in the
Sl system of
quantities and
units.

All other
quantities are
called derived
guantities as
they are
ultimately
defined in terms
of the 7 base
quantities using
defining
equations.

Quantities
cannot be
defined in terms
of units and vice
versa.
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Examples of Sl Derived Units

Quantity Derived in terms of base and short form
Energy kg m®s™ J

Power m? kg s? w

Electric potential difference m?kgs® At v

Electric resistance m? kg s® A? Q

Specific heat capacity m?kg s?K* Jkg* K
Electric field strength m kg sPA? vmtorNC?

Multiples and Submultiples

Frequently, there are situations Prefix
where it is more convenient to use Factor Name Symbol
smaller or bigger units than the 1072 pico D
standard base and derived units. For 5
that purpose, prefixes for multiples 10_6 ngno n
and submultiples are used together 10 micro u
with the base or derived units. 10° milli m
. 10° centi c
For example, when molecular size =) .
objects are being measured, it is 103 deci d
more convenient to use nano-metre 10 kilo K
or nm in recordings. Another 10° mega M
example is the use of mega-watt or 10° giga G
MW when referring to power output 10%2 tera T

of power stations. Only those in syllabus

Examples of Non-Sl units & Conversion Factors

Length inch (") 1" = 0.0254 m or 2.54 cm

Speed knot (kn) 1kn= 0514444 ms™
Energy electronvolt (eV) levV=16x10"J
Pressure bar (bar) 1 bar = 10° Pa

Time minutes (min or ') I1min= 60s

Time hour (h or hr) 1h= 3600s
Volume litre (L or I) 1L= 10°m?®or 1000 cm®

'hy are units important?

Without one, a measurement value is a pure number that does not tell us
how much of what quantity we have and thus is a useless number. In
addition, failure to pay attention to the units used is a very common reason
for students getting wrong values in calculations. Some people paid dearly
for such mistakes. In 1999, NASA’s Mars orbiter smashed into the planet
because their engineers failed to convert English pound of force into SlI
newton in their calculations.

How to handle units in equations?

Rule 1 — All terms in an equation must have the same units. Terms refer to
quantities forming a group by multiplication or division and each
group is separated from others by + - or = sign. For example, s = ut
+ % at’ is made up of three terms s, ut and ¥ at® and if s is to be in
cm, then numerical values substituted must yield cm for both terms
ut and %2 at’.
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Sl derived units
are often given
short forms
which one must
learn to
recognise.

Prefixes for
multiples and
submultiples are
often used and
need to be learnt.

The factors for
multiples,
submultiples and
for converting
non-Sl to Si
units are
important in
calculations.

All terms in an
equation must
have the same
units.
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Rule 2 — Attention must be paid to the conversion factors when multiples or For calculations

submultiples of base units or when non-Sl units are used in using numerical
calculations so that all terms will have consistent units. In contrast, values in
using only Sl base and Sl derived units does not introduce any multiples or
numerical factor into the equations. submultiples of
Examples: units and non-SlI
The net force required to give a 2 kg mass an acceleration of units, their
3 m s?is calculated by Fne = ma = 2(3) = 6 N but the net force conversion
required to give a 2 kg mass an acceleration of 3 cm s is factors should be
definitely not calculated by F. = ma = 2(3) = 6 N. The latter used to make
case’s numerical value of 6 is not 6 N of force but should be 6 the units on both
kg cm s of force and 1 N is not the same as 1 kg cm s™. sides of the
equation the
Given a particle of mass 1.7 x 10?" kg with KE 3 eV and same.
desiring to find the speed in m s™ using KE = % mv®, one must
convert eV into J using the appropriate conversion factor.
3 Errors and Uncertasinties
Definitions
Measurement
Measurement error = Measured value — True value error =
Measured value
In the majority of cases, the true value is unknown. However, many — True value
reference values have been established through careful measurements so
that engineers and scientists can compare their measured values against
these reference values instead.
Measurement error is made up of two components: Systematic and Random.
Measurement
Measurement error = Systematic error + Random error error

Systematic error

Systematic error is one which is constant or varies in a (one which is
predictable way when the measurement is repeated. constant or
varies in a
predictable way
when the

Random error is one which varies in unpredictable manner when

the measurement is repeated. measurement is
repeated)
+
. . . Random error
Relationship between one particular measured value, true value and ;
i (one which
the two component errors: Lo
varies in
unpredictable
\ Normal Distribution manner when
/ of measured values
/ \\ the
Mean \ measurement is
measured \,_ Particular repeated)
value \@sured value
| | | | [
1 1 1 1 L
0 < . >« b
Systematic error Random error
True value X Measurement error "

Measured value

S —
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50 es of Systematic and Random Errors

Origins of random error could be:

1. Apparatus have unpredictable fluctuations which in turn may be due to
random fluctuations in environmental conditions. e.g. vibrations,
fluctuating temperature, pressure, electric and magnetic fields.

2. Experimenter's randomness in interpreting reading or carrying out
procedures. e.g. reaction time in using stopwatch, not placing load at
exactly the same spot as required, not measuring length from exact
same point perhaps due to difficulty in placing ruler right next to it.

3. Property to be measured has random nature. e.g. radioactive decay,
voltage inherently fluctuates due to fluctuating environmental conditions,
diameter of wire varies along wire.

Origins of systematic error could be:

1. Apparatus have predictable errors. e.g zero error, a fixed extension of
string for a given load, faulty stopwatch which consistently runs fast,
calibration markings which are closer than what they should be,
electrical circuit heats up after prolonged usage.

2. Experimenter may interpret reading or carry out procedure with a
consistent error. e.g. measuring length of pendulum from suspension
point to the tip instead of centre of bob, marking out a wrong height on a
ramp to release a ball, leaving a mercury thermometer bulb at the
bottom of a beaker close to the heat source and not stirring.

H Mlu“lw\ Vleasurer

Understanding how the errors arise allows us to better manage them. As
seen above, each type of error can have a number of contributing factors. In
principle, the total systematic error can be eliminated if we can identify all the
causes. The problem is that they are difficult to detect especially if true or
reference values are not available.

\“Hl[“ﬂ )

On the other hand, total random error cannot be completely eliminated but
only reduced. Some contributions such as experimenter’s inconsistent way
of carrying out the steps or the poor set up of equipment might be eliminated
or reduced with better technique. For example, parallax error when a ruler is
not placed right next to the start and end points but separated by a gap. The
gap causes the experimenter to estimate the start and end points on the
ruler, thereby causing random error. When all that can be done has been
done, the component of random error that cannot be removed would be the
error that is due to the interpolation between scale markings.

For a single measurement without a true value for reference, we can never
know the amount of random error except the contribution linked to the
smallest scale marking. With repeated measurements, we get a better idea
of the amount of random error. With many measured values, the random
errors will follow a normal distribution as shown above. The representative
random error or uncertainty is taken to be the standard deviation o of the
errors. As calculation of o is not required at ‘A’ level, it is enough to know

that o varies as 1/+/N —1 which means that the larger the number of

readings N the smaller the uncertainty o. For ‘A’ level, it is enough to
estimate o based on the amount of fluctuation from the mean.

The table shows 6 pairs of Liiom | La/em | Lae/om | AL/cm
measurements of some length,

average values and deviations 4.6 5.1 4.85 0.25

AL from the means. Ideally more 6.5 6.0 6.25 0.25

repeated measurements s 7.9 8.3 8.10 0.20

bettfarybut minimum expectation 89 92 9.05 015

for ‘A’ level is to repeat once.

Even then, the AL can still give 101 108 10.45 0.35

a very rough idea of o. 11.9 12.5 12.20 0.30

There are many
possible sources
contributing to
the final
systematic or
random error.

Systematic error
can be
eliminated once
the causes are
known.

Random error
cannot be totally
eliminated.
Some
contributions can
be eliminated or
reduced. The
contribution
associated with
the smallest
division of the
instrument will
always be
present.
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We see that AL ranges from 0.15 to 0.35, pointing to random error
contributions besides the 0.1 cm associated with the ruler's smallest division.
Estimation of o is about 0.25 or 0.3 cm. To conclude, when repeated
measurements are available, we take the mean value to be a representative
or reliable value of the measured quantity and o to be the uncertainty; where
ois like the mean of the random errors.

Note that the uncertainty o is not exact; hence there is no sense in quoting
its value with more than 1 significant figure (s.f.). Thus knowing the
uncertainty allows us to record the value of our measured quantity with a
meaningful number of s.f. For example, the measured quantity in row 1 is
represented by the mean value 4.85 cm but since the error ois 0.3, the digit
8 is uncertain. The digit 5 has place value of 0.01 compared to place value
0.1 for digit 8. Digit 5 is thus less significant than 8. With digit 8 being
uncertain, we should only record the final measurement as 4.9 £ 0.3 cm.

4 Precision Vs Accuracy

Precision is a measure of the closeness of measured values
when a measurement is repeated.

The word precision is used to describe measured values as well as the
instrument. A higher precision corresponds to a smaller spread of values
about the mean i.e. smaller random errors and hence o

Accuracy is a measure of the closeness of a measured value to
the true value or reference value.

Accuracy is thus poor if the systematic error is large.

Mean measured value in A is more accurate than in B but equally precise

True A True £
value Mean value Mean

v
v

Systematic o Systematic error o

error

Mean measured value in A is more accurate and more precise than in C
Mean measured value in B is more precise but less accurate than in D

True C True D
value Mean value Mean
f —t f f f
< »— 0 “— —>
Systematic error o Systematic o
error

v
v

o 4=

For E and F, can compare precision but not accuracy

Making more
repeated
measurements
lead to a more
reliable mean
value with a
representative
random error
called the
uncertainty.

Uncertainty
should be given
to1s.f.

Precision
describes
measured values
or an instrument.
A smaller
precision means
a smaller
random errors
and closer
clustering of
measured values.

Accuracy
describes the
closeness of
measured values
from the true or
reference value.
Better accuracy
means smaller
systematic error.

No assessment
of accuracy is
possible without
knowing the true
value or
reference value.
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5 Propagation of Random Errors in Calculations

Measured values are often called raw data. Assuming that systematic errors
have been eliminated, there are still random errors that are impossible to
eliminate, and we would expect the uncertainty to propagate to the
calculated values. So how do uncertainties propagate in calculations? The
answer is that it depends on the type of mathematical operations involved.

There are two basic types of math operations (Aa, Ab, Ac are uncertainties of
the raw data and R is the calculated result):

+ & — X & +

Basic rule: Basic rule:

R=axb-+c
R=a+b or R=a-b

Then AR = Aa + Ab Then

AR Aa Ab Ac
_ —— 4 —
R a b (o]

Variations from the basic rule: Variations from the basic rule:

For R=a’or R=a?

AR Aa  Aa
For R=2a=a+a R a ' a

- a a
AR =2Aa AR _2aa
In general, for R = na, whether n is R a

integer or not, In general, for R = a™, whether n is

AR = nAa integer or not,
AR _ nAa
R a
Combinations of + — X =+
Example:
R=2ab=ab +ab or 2Q Q=ab
A Aa Ab
AR = 2AQ where AQ =— 4+ —
Q a b
Aa , Ab
AR =2AQ =2/ 22 + &2
Q-2(42.4b)
AR _da_ Ab
20Q a b
AR _Aa_Ab
R a b
Hence, in general, for R = nab where n is a number that is not measured

. . AR Aa Ab . .
and without uncertainty, R - a + Y i.e. use basic rule for x =+ and
a

simply ignore n.

Example:

v=u+at where u, a and t are measured and v is calculated

Av = Au + AR where %:§+% = AR:(EJr%jR

a a
AV = AU + (£+ g]at
a t

There are other mathematical operations such as log a, sin a, cos a and e® but the
propagation of uncertainties for these is not required for ‘A’ level.

Measurement
errors propagate
through
calculations
depending on
the math
operations.
There are two
basic categories
of math
operations. Each
category has its
basic rule for the
calculation of
propagated
uncertainty.

For more
complicated
calculations, a
combination of
the basic rules

apply.
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Aa is called absolute uncertainty while Aa is called fractional uncertainty
a

and ﬁxloo% is called percentage uncertainty. Absolute uncertainty is
a

given to 1 s.f. while both fractional and percentage uncertainties are
frequently given up to 2 s.f. but not more.

It is of utmost importance to express the calculated quantity in terms of
measured ones before applying the calculation rules. This will ensure that
uncertainties of measured quantities are never subtracted from one another;
only added. However, uncertainty of measured quantities can be subtracted
from calculated quantity.

Given T = 27r\/E where T is the period of a pendulum of length L and g is
g9

the free fall acceleration. Calculate the fractional uncertainty of g given the
measurements T + AT and L + AL.

Calculation 1: Calculation 2:
T = 272'\/E Put g as subject first,
9 g AL
jﬂzé(A_LjJ,%[A_gj T2
N -89 (L), 4T
Ag _2AT AL o g (L T) v
g T L

6 Estimation of Uncertainties in Calculations

There are times when we do not need to know precisely the uncertainties in
our calculated values. Then we would not apply the calculation rules in
section 5. Instead, we rely on rules of thumb to help us estimate the
uncertainties and then present the calculated values with a reasonable
number of s.f. One such situation is in parts of ‘A’ level practical work.

Rule of thumb 1

When multiplying or dividing two numbers, the number of s.f. in the
answer should follow the input number with the least number of s.f.

Rule of thumb 2

When adding or subtracting two numbers, the number of d.p. (decimal
places) in the answer should follow the input number with the least
number of d.p.

Rule of thumb 3

When calculating log a or In a, the number of d.p. in the answer should be
the number of s.f. of the input number.

The number of s.f. presented in a

numerical value is the number of digits ALl

Number

excluding the leading zeros but including 315.2 4 sf.

the trailing zeros. The last digit is the one 315.0 Ast

with uncertainty except for cases like last
row's 320, which is ambiguous if the 0.3150 4s.f

uncertainty is not stated. If the number is 0315 3sf.

presented as 320 + 2, then the number
has 3 s.f. but if presented as 320 + 10, 320 2 or 3s.f.

then it has 2 s.f.

Absolute
uncertainty: Aa

Fractional

.. Aa
uncertainty: —
a

Percentage
uncertainty:

A% 100%
a

Always express
calculated
quantity in terms
of measured
ones before
applying the
calculation rules.
This ensures
uncertainties of
measured
quantities are
never subtracted
from one another;
only added.
However,
uncertainty of
measured
gquantities can be
subtracted from
calculated
guantity.

If precise
uncertainties are
not needed,
rules of thumb
help us to retain
a reasonable
number of s.f. in
calculated
values.
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7 Estimation of Quantities

Estimating the value of a quantity in a given situation is very useful for
quickly spotting mistakes in calculations.
Example:
A student is told that a sealed container of volume 0.25 m® contains
10 mol or 6.02 x 10%* molecules. He tried to calculate the diameter of
each molecule as follows.
Volume occupied by each molecule  4nr®/3 = 0.25/(6.02 x 10%%)
radius r =10 x 10° m
diameter = 2.0 x 10° m
If he had known that the typical size of an atom is about 10" m, then
the calculated answer will immediately look unreasonable as it is 200
times bigger than 10" m.

No typical values specified by the syllabus but some suggested values are:

Quantity Typical value
Size of atom 10 m
Height of Mt. Everest 8 km
Time for a human to sprint 200 m 10s

Mass of a car 1000 — 2000 kg
Density of water 1gcm?
Atmospheric pressure at sea level 10° Pa
Power to kettle 2 -3 kw
Power to filament bulb and LED 60 W, 50 mW
Household socket maximum current 13A
Accelerating voltage in X-ray machine 10 — 200 kV
Visible light wavelength 400 — 800 nm

You can estimate some quantities indirectly if you know how they are related
to other quantities. For example, the height of a HDB block is the humber of
storeys x height of each storey which can be estimated more easily. The
mass of water in a 1 m* container = 10° cm® x 1 g cm™ = 10° g or 1000 kg.

8 Scalars and Vectors

A scalar is a quantity which only has a magnitude but no direction

A vector is a quantity which has a magnitude and a direction.

Note that a vector cannot be specified with just a number, because a single
number cannot tell us its direction. There are many ways to specify or
describe a vector. Some examples are:

1. Add a description to a number e.g. 5 N pointing North, 2 m s™ with
bearing 120°, 6 m st atan angle of 60° with respect to the horizontal.

2. Draw an arrow whose length tells us the magnitude and the direction is
as indicated by the arrow.

3. If the vectors are all either pointing one way or directly opposite, then +
and - sign can be used to indicate the two opposite directions. For
example, if + 5 m displacement is to the right then - 5 m is to the left.

Drawing accurate arrows on paper is a heat way to specify a vector. A well-
drawn scale diagram can help us find the result of addition or subtraction of
vectors. If only a rough sketch is drawn, it is still very useful as it allows us to
make use of trigonometric functions, sine rule and cosine rule and
Pythogoras Theorem to calculate the result of addition or subtraction.

The ability to
remember
typical values of
common
quantities is a
useful first line of
defence against
calculation
mistakes.

A scalar only has
magnitude while
a vector has
both magnitude
and direction.

There are many
ways to specify
the direction of a
vector.

In particular,
vector diagrams
are very useful.
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/ector Subtractior

At ‘A’ level, there will be frequent encounters of vector subtraction because
some common quantities are defined in terms of change of vectors. For

example, acceleration is defined as rate of change of velocity AA—\:. It is also

very frequent that students wrongly subtract vectors by treating them as just
magnitudes. Since the direction associated with vectors cannot be
subtracted numerically, the correct way is to use a vector diagram to keep
track of the subtraction of both magnitudes and directions. Vector subtraction
is built upon the following two concepts:

1. negative of a vector

2. vector addition

Example of Vector Subtraction

A ball approaches a slanted wall with a horizontal @)
velocity of 30 m s™. After hitting the wall, it rebounds ¥ v
with a velocity of 20 m s™ in a direction at an angle of 60° f
60° with the horizontal. Find it's change in velocity. > 4

By definition AV =v; —v; !
AV =V; + X where X = —v;

Using the vector diagram, the magnitude
of Av can be found using cosine rule:

|AV]? = 302 + 202 - 2(30)(20)cos120°

|A\7|2 =436ms?t

To find @ so that the direction of Av can
be specified, sine rule can be used:
sing  sin120°
20 |AV]
0 =23°

.. change in velocity is 44 m st atan angle of 23° with the horizontal.

Resolution of a Vecto

Resolution of a 2D vector R refers to finding a
pair of vectors which when added will produce

the vector R . In Physics, we are mostly
interested in a perpendicular pair. Still there
are an infinite number of perpendicular pairs

that when added will give R. For example, the
force Ifacting on a block on a slope can be
resolved into components &, & &, or into the pair b, & b, or any other pair
according to the purpose of resolution.

The reason for choosing perpendicular components is that they are
independent, which allows analysis and calculations to be done for a specific
direction, involving only the components along that direction. An example is

the force F on the block above. The acceleration along the slope is only
affected by the component b, and not b, .

R @

The magnitude of a component is
frequently needed in terms of the
magnitude R of the original vector. The
components’ magnitudes can be found 2]
using the definitions of sine and cosine.

Rsing
or Rcos¢g

Rsing or Rcosd

Remembering
which quantities
are vectors is
very important
because vector
addition and
subtraction is not
the same as for
scalars.

Vector

subtraction is

built upon

concept of

1. negative of a
vector &

2. vector
addition.

A\7 = \7f _\7i

AV =V + X

where X = —v;

Components are
frequently
needed, so
familiarity with
resolution of a
vector into
perpendicular
components is
very important.

The directions of
the components
are chosen
based on the
purpose of
resolution.
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