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Measurement 
 

1  Importance of Measurement 

Scientific knowledge is powerful because it is not just untested theory and 
hypotheses. Scientists demand that the theories be supported with empirical 
evidence or measurements. For example, Einstein’s General Relativity 
theory suggested that gravity can bend the path of light but our ultimate 
confidence in the theory is whether the bending can be measured and 
checked against the amount predicted by the theory.  

Measurement is about quantifying things and the ability to quantify things 
allows calculations, analyses and deductions which in turn lead to new 
knowledge or theories. Once a theory is well supported by empirical data, it 
then can be used for predicting outcomes or results. To understand what the 
big deal about prediction is, let’s just consider the construction of a high rise 
building which costs millions of dollars. An architect will carry out calculations 
to make sure the designed building can withstand the expected loading and 
maybe possible earthquake. Those calculations are done using theoretical 
formulae that have been verified with prior measurements! 

 

2  SI System of Quantities & Units 

For measurements to be useful, they need to be expressed in terms of 
appropriate units which are internationally accepted. * See Joint Committee for Guides 

in Metrology (JCGM), International Vocabulary of Metrology, Basic and General Concepts and Associated 
Terms (VIM), III ed., Pavillon de Breteuil : JCGM 200:2012. 

International System (SI) of 

Quantities Units 

7 base quantities which cannot be 
defined in terms of other 
quantities: 

length, mass, time,  
electric current, 
thermodynamic temperature, 
amount of substance, 
luminous intensity 

7 base units corresponding to the  
base quantities: 

metre (m), kilogram (kg), 
second (s), ampere (A), 
kelvin (K), mole (mol) and 
candela (cd) 
(Note: candela is not required in 
syllabus) 

Derived quantities are defined in 
terms of the base quantities. e.g. 

Force maF   

but 
t

v
a




   

and 
t

s
v




   

so F is finally defined in terms of 
base quantities: length, mass, 
time. 

Derived units are defined in terms 
of the base units. The notation* 
[Q] means ‘unit of Q’: 

[F] = [ma] 

 = [m] [a] = [m] [v/t] 

 = [m] [s/t]/[t] 

 = kg m s
-2

 

Derived unit kg m s
-2

 is given a 
convenient short form N (newton). 

The formulae in the syllabus are all coherent with the SI system unless 
otherwise stated. That means the equations used to relate quantities, e.g. F 
= ma, assume SI units are used. Therefore, values substituted must be in SI 
units. In addition, values with multiple or sub-multiple of base units must 
include the appropriate multiple factors. 

Note also that quantities are always defined in terms of quantities and units 
are always defined in terms of units i.e. quantities and units are different 
entities. Hence it would be wrong to define speed(a quantity) as ‘the 
distance(a quantity) travelled per second(a unit)’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
There are 7 base 
quantities and 
corresponding 
base units in the 
SI system of 
quantities and 
units. 
 
 

All other 
quantities are 
called derived 
quantities as 
they are 
ultimately 
defined in terms 
of the 7 base 
quantities using 
defining 
equations. 
 
 
 
 

Quantities 
cannot be 
defined in terms 
of units and vice 
versa. 
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Examples of SI Derived Units 

 Quantity Derived in terms of base and short form 

 Energy  kg m
2
 s

-2
 J 

 Power  m
2
 kg s

-3
 W 

 Electric potential difference m
2
 kg s

-3
 A

-1
 V 

 Electric resistance  m
2
 kg s

-3
 A

-2
  

 Specific heat capacity  m
2
 kg s

-2
 K

-1
  J kg

-1
 K

-1
 

 Electric field strength m kg s
-3

 A
-1

  V m
-1

 or N C
-1

  

Multiples and Submultiples 

Frequently, there are situations 
where it is more convenient to use 
smaller or bigger units than the 
standard base and derived units. For 
that purpose, prefixes for multiples 
and submultiples are used together 
with the base or derived units. 

For example, when molecular size 
objects are being measured, it is 
more convenient to use nano-metre 
or nm in recordings. Another 
example is the use of mega-watt or 
MW when referring to power output 
of power stations. 

 

Examples of Non-SI units & Conversion Factors 

Length inch () 1  =  0.0254 m or 2.54 cm 

Speed knot (kn) 1 kn =  0.514444 m s
-1

 

Energy electronvolt (eV) 1 eV =  1.6  10
-19

 J 

Pressure bar (bar) 1 bar =  10
5
 Pa 

Time minutes (min or ) 1 min =  60 s 

Time hour (h or hr) 1 h =  3600 s 

Volume litre (L or l) 1 L =  10
-3

 m
3
 or 1000 cm

3
 

 

Without one, a measurement value is a pure number that does not tell us 
how much of what quantity we have and thus is a useless number. In 
addition, failure to pay attention to the units used is a very common reason 
for students getting wrong values in calculations. Some people paid dearly 
for such mistakes. In 1999, NASA’s Mars orbiter smashed into the planet 
because their engineers failed to convert English pound of force into SI 
newton in their calculations. 
 

Rule 1 – All terms in an equation must have the same units. Terms refer to 
quantities forming a group by multiplication or division and each 
group is separated from others by + - or = sign. For example, s = ut 
+ ½ at

2
 is made up of three terms s, ut and ½ at

2
 and if s is to be in 

cm, then numerical values substituted must yield cm for both terms 
ut and ½ at

2
. 

 
 
 
SI derived units 
are often given 
short forms 
which one must 
learn to 
recognise. 
 
 
 
 
 
 
 
 
Prefixes for 
multiples and 
submultiples are 
often used and 
need to be learnt. 
 
 
 
 
 
 
 
 
 
 
The factors for 
multiples, 
submultiples and 
for converting 
non-SI to SI 
units are 
important in 
calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All terms in an 
equation must 
have the same 
units. 
 

Factor 
Prefix 

Name Symbol 

10
-12

 pico p 

10
-9 

nano n 

10
-6 

micro  

10
-3 

milli m 

10
-2 

centi c 

10
-1 

deci d 

10
3 

kilo k 

10
6 

mega M 

10
9 

giga G 

10
12

 tera T 
    Only those in syllabus 
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Rule 2 –  Attention must be paid to the conversion factors when multiples or 
submultiples of base units or when non-SI units are used in 
calculations so that all terms will have consistent units. In contrast, 
using only SI base and SI derived units does not introduce any 
numerical factor into the equations. 

Examples: 
 The net force required to give a 2 kg mass an acceleration of 

3 m s
-2

 is calculated by Fnet = ma = 2(3) = 6 N but the net force 
required to give a 2 kg mass an acceleration of 3 cm s

-2
 is 

definitely not calculated by Fnet = ma = 2(3) = 6 N. The latter 
case’s numerical value of 6 is not 6 N of force but should be 6 
kg cm s

-2
 of force and 1 N is not the same as 1 kg cm s

-2
. 

 

 Given a particle of mass 1.7  10
-27

 kg with KE 3 eV and 
desiring to find the speed in m s

-1
 using KE = ½ mv

2
, one must 

convert eV into J using the appropriate conversion factor. 
  
 

3  Errors and Uncertainties 

 

 

In the majority of cases, the true value is unknown. However, many 
reference values have been established through careful measurements so 
that engineers and scientists can compare their measured values against 
these reference values instead. 

Measurement error is made up of two components: Systematic and Random. 
 
 
 
 
 
 
 
 
 
 
 

 

For calculations 
using numerical 
values in 
multiples or 
submultiples of 
units and non-SI 
units, their 
conversion 
factors should be 
used to make 
the units on both 
sides of the 
equation the 
same. 

 

 

 

 

 
Measurement 
error = 
Measured value 
– True value 

 

 

 
Measurement 

error 
= 

Systematic error 
(one which is 
constant or 
varies in a 

predictable way 
when the 

measurement is 
repeated) 

+ 
Random error 

(one which 
varies in 

unpredictable 
manner when 

the 
measurement is 

repeated) 
 

 

 

 

 

 

 

Measured value 

Mean 
measured 

value 

Normal Distribution 
of measured values 

True value 

Systematic error Random error 

Relationship between one particular measured value, true value and 
the two component errors: 

0 

Measurement error 

Particular 
measured value 

Systematic error is one which is constant or varies in a 
predictable way when the measurement is repeated. 

 

Random error is one which varies in unpredictable manner when 
the measurement is repeated. 

 

Measurement error = Systematic error + Random error 

 

Measurement error = Measured value – True value 
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Origins of random error could be: 

1. Apparatus have unpredictable fluctuations which in turn may be due to 
random fluctuations in environmental conditions. e.g. vibrations, 
fluctuating temperature, pressure, electric and magnetic fields. 

2. Experimenter’s randomness in interpreting reading or carrying out 
procedures. e.g. reaction time in using stopwatch, not placing load at 
exactly the same spot as required, not measuring length from exact 
same point perhaps due to difficulty in placing ruler right next to it. 

3. Property to be measured has random nature. e.g. radioactive decay, 
voltage inherently fluctuates due to fluctuating environmental conditions, 
diameter of wire varies along wire. 

Origins of systematic error could be: 

1. Apparatus have predictable errors. e.g zero error, a fixed extension of 
string for a given load, faulty stopwatch which consistently runs fast, 
calibration markings which are closer than what they should be, 
electrical circuit heats up after prolonged usage. 

2. Experimenter may interpret reading or carry out procedure with a 
consistent error. e.g. measuring length of pendulum from suspension 
point to the tip instead of centre of bob, marking out a wrong height on a 
ramp to release a ball, leaving a mercury thermometer bulb at the 
bottom of a beaker close to the heat source and not stirring. 

 

Understanding how the errors arise allows us to better manage them. As 
seen above, each type of error can have a number of contributing factors. In 
principle, the total systematic error can be eliminated if we can identify all the 
causes. The problem is that they are difficult to detect especially if true or 
reference values are not available.  

On the other hand, total random error cannot be completely eliminated but 
only reduced. Some contributions such as experimenter’s inconsistent way 
of carrying out the steps or the poor set up of equipment might be eliminated 
or reduced with better technique. For example, parallax error when a ruler is 
not placed right next to the start and end points but separated by a gap. The 
gap causes the experimenter to estimate the start and end points on the 
ruler, thereby causing random error. When all that can be done has been 
done, the component of random error that cannot be removed would be the 
error that is due to the interpolation between scale markings. 

For a single measurement without a true value for reference, we can never 
know the amount of random error except the contribution linked to the 
smallest scale marking. With repeated measurements, we get a better idea 
of the amount of random error. With many measured values, the random 
errors will follow a normal distribution as shown above. The representative 

random error or uncertainty is taken to be the standard deviation  of the 

errors. As calculation of  is not required at ‘A’ level, it is enough to know 

that  varies as 1/1 N which means that the larger the number of 

readings N the smaller the uncertainty . For ‘A’ level, it is enough to 

estimate  based on the amount of fluctuation from the mean.  

The table shows 6 pairs of 
measurements of some length, 
average values and deviations 

L from the means. Ideally more 
repeated measurements is 
better but minimum expectation 
for ‘A’ level is to repeat once. 

Even then, the L can still give 

a very rough idea of .  

 

 

 

 

 

 

 

There are many 
possible sources 
contributing to 
the final 
systematic or 
random error. 

 

 

 

 

 

 

Systematic error 
can be 
eliminated once 
the causes are 
known. 

 

Random error 
cannot be totally 
eliminated. 
Some 
contributions can 
be eliminated or 
reduced. The 
contribution 
associated with 
the smallest 
division of the 
instrument will 
always be 
present.  

 

 

 

 

 

 

 

 

L1 / cm L2 / cm Lave / cm L / cm 

4.6 5.1 4.85 0.25 

6.5 6.0 6.25 0.25 

7.9 8.3 8.10 0.20 

8.9 9.2 9.05 0.15 

10.1 10.8 10.45 0.35 

11.9 12.5 12.20 0.30 
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We see that L ranges from 0.15 to 0.35, pointing to random error 
contributions besides the 0.1 cm associated with the ruler’s smallest division. 

Estimation of  is about 0.25 or 0.3 cm. To conclude, when repeated 
measurements are available, we take the mean value to be a representative 

or reliable value of the measured quantity and  to be the uncertainty; where 

 is like the mean of the random errors. 

Note that the uncertainty  is not exact; hence there is no sense in quoting 
its value with more than 1 significant figure (s.f.). Thus knowing the 
uncertainty allows us to record the value of our measured quantity with a 
meaningful number of s.f. For example, the measured quantity in row 1 is 

represented by the mean value 4.85 cm but since the error  is 0.3, the digit 
8 is uncertain. The digit 5 has place value of 0.01 compared to place value 
0.1 for digit 8. Digit 5 is thus less significant than 8. With digit 8 being 

uncertain, we should only record the final measurement as 4.9  0.3 cm. 
 

 4  Precision Vs Accuracy
 
 
 
 
The word precision is used to describe measured values as well as the 
instrument. A higher precision corresponds to a smaller spread of values 

about the mean i.e. smaller random errors and hence .  
 
 

 

Accuracy is thus poor if the systematic error is large. 
 

 

Making more 
repeated 
measurements 
lead to a more 
reliable mean 
value with a 
representative 
random error 
called the 
uncertainty. 
 
Uncertainty 
should be given 
to 1 s.f.  
 
 
 
Precision 
describes 
measured values 
or an instrument. 
A smaller 
precision means 
a smaller 
random errors 
and closer 
clustering of 
measured values. 
 
Accuracy 
describes the 
closeness of 
measured values 
from the true or 
reference value. 
Better accuracy 
means smaller 
systematic error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No assessment 
of accuracy is 
possible without 
knowing the true 
value or 
reference value. 
 

Mean measured value in A is more accurate than in B but equally precise 

Systematic 
error 

A 

Mean 

True 
value 

  
0 

Systematic 
error 

True 
value 

  
0 

Mean 

D 

Mean measured value in A is more accurate and more precise than in C 

Mean measured value in B is more precise but less accurate than in D  

For E and F, can compare precision but not accuracy 

  

True 
value 

Systematic error 
0 

Mean 

B 

0 

E F 

  

True 
value 

Systematic error 
0 

Mean 

C 

Precision is a measure of the closeness of measured values 
when a measurement is repeated. 

 

Accuracy is a measure of the closeness of a measured value to 
the true value or reference value. 
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5  Propagation of Random Errors in Calculations 

Measured values are often called raw data. Assuming that systematic errors 
have been eliminated, there are still random errors that are impossible to 
eliminate, and we would expect the uncertainty to propagate to the 
calculated values. So how do uncertainties propagate in calculations? The 
answer is that it depends on the type of mathematical operations involved.  

There are two basic types of math operations (a, b, c are uncertainties of 
the raw data and R is the calculated result): 

 +  &     &   

Basic rule: 

           R = a + b    or    R = a – b 

Then            R = a + b  

 

Basic rule: 

    R = a  b  c 

Then     
c

c

b

b

a

a

R

R 









 

Variations from the basic rule: 
 
 

For  R = 2a = a + a 

 R = 2a 

In general, for R = na, whether n is 
integer or not, 

 R = na 

Variations from the basic rule: 

For  R = a
2
  or  R = a

-2
 

 

a

a

R

R

a

a

a

a

R

R














2
 

In general, for R = an
, whether n is 

integer or not, 

 
a

an

R

R 



 

 

Combinations of +       

Example: 

R = 2ab = ab + ab  or  2Q Q = ab   

R = 2Q       where 
b

b

a

a

Q

Q 






 

b

b

a

a

R

R

b

b

a

a

Q

R

Q
b
b

a
aQR






















 

2

22

 

Hence, in general, for R = nab where n is a number that is not measured 

and without uncertainty, 
b

b

a

a

R

R 






 i.e. use basic rule for    and 

simply ignore n. 

Example: 

v = u + at where u, a and t are measured and v is calculated 

v = u + R where  R
t

t

a

a
R

t

t

a

a

R

R







 












     

v = u + at
t

t

a

a







 



 

There are other mathematical operations such as log a, sin a, cos a and e
a
 but the 

propagation of uncertainties for these is not required for ‘A’ level. 

 
 
 
 
 
 
 
Measurement 
errors propagate 
through 
calculations 
depending on 
the math 
operations. 
There are two 
basic categories 
of math 
operations. Each 
category has its 
basic rule for the 
calculation of 
propagated 
uncertainty. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For more 
complicated 
calculations, a 
combination of 
the basic rules 
apply. 
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a is called absolute uncertainty while 
a

a
is called fractional uncertainty 

and %100


a

a
is called percentage uncertainty. Absolute uncertainty is 

given to 1 s.f. while both fractional and percentage uncertainties are 
frequently given up to 2 s.f. but not more. 

It is of utmost importance to express the calculated quantity in terms of 
measured ones before applying the calculation rules. This will ensure that 
uncertainties of measured quantities are never subtracted from one another; 
only added. However, uncertainty of measured quantities can be subtracted 
from calculated quantity.  

Given 
g

L
T 2 where T is the period of a pendulum of length L and g is 

the free fall acceleration. Calculate the fractional uncertainty of g given the 

measurements T  T and L  L. 

Calculation 1:   

L

L

T

T

g

g

g

g

L

L

T

T

g

L
T

















 








 







2

2

1

2

1

2

 

Calculation 2: 

 Put g as subject first, 

 








 








 







T

T

L

L

g

g

T

L
g

2

4

2

2

 

 

6  Estimation of Uncertainties in Calculations 

There are times when we do not need to know precisely the uncertainties in 
our calculated values. Then we would not apply the calculation rules in 
section 5. Instead, we rely on rules of thumb to help us estimate the 
uncertainties and then present the calculated values with a reasonable 
number of s.f. One such situation is in parts of ‘A’ level practical work. 

Rule of thumb 1 

When multiplying or dividing two numbers, the number of s.f. in the 
answer should follow the input number with the least number of s.f. 

Rule of thumb 2 

When adding or subtracting two numbers, the number of d.p. (decimal 
places) in the answer should follow the input number with the least 
number of d.p. 

Rule of thumb 3 

When calculating log a or ln a, the number of d.p. in the answer should be 
the number of s.f. of the input number. 

The number of s.f. presented in a 
numerical value is the number of digits 
excluding the leading zeros but including 
the trailing zeros. The last digit is the one 
with uncertainty except for cases like last 
row’s 320, which is ambiguous if the 
uncertainty is not stated. If the number is 

presented as 320  2, then the number 

has 3 s.f. but if presented as 320  10, 
then it has 2 s.f. 

Absolute 

uncertainty: a 

Fractional 

uncertainty: 
a

a
 

Percentage 
uncertainty:

%100


a

a
 

 

Always express 
calculated 
quantity in terms 
of measured 
ones before 
applying the 
calculation rules. 
This ensures 
uncertainties of 
measured 
quantities are 
never subtracted 
from one another; 
only added. 
However, 
uncertainty of 
measured 
quantities can be 
subtracted from 
calculated 
quantity.  

 
 
 
 
 
If precise 
uncertainties are 
not needed, 
rules of thumb 
help us to retain 
a reasonable 
number of s.f. in 
calculated 
values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number Number of s.f. 

315.2 4 s.f. 

315.0 4 s.f. 

0.3150 4 s.f 

0.315 3 s.f. 

320 2 or 3 s.f. 

 

  
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7  Estimation of Quantities 

Estimating the value of a quantity in a given situation is very useful for 
quickly spotting mistakes in calculations.  

Example: 
A student is told that a sealed container of volume 0.25 m

3
 contains 

10 mol or 6.02  10
22

 molecules. He tried to calculate the diameter of 
each molecule as follows. 

Volume occupied by each molecule      4r
3
/3 = 0.25/(6.02  10

22
) 

    radius r = 10  10
-9

 m 

     diameter = 2.0  10
-8

 m 
If he had known that the typical size of an atom is about 10

-10
 m, then 

the calculated answer will immediately look unreasonable as it is 200 
times bigger than 10

-10
 m. 

No typical values specified by the syllabus but some suggested values are: 

Quantity Typical value 

Size of atom 

Height of Mt. Everest 

Time for a human to sprint 100 m 

Mass of a car 

Density of water 

Atmospheric pressure at sea level 

Power to kettle 

Power to filament bulb and LED 

Household socket maximum current 

Accelerating voltage in X-ray machine 

Visible light wavelength 

10
-10

 m 

8 km 

10 s 

1000 – 2000 kg 

1 g cm
-3

 

10
5
 Pa 

2 – 3 kW 

60 W, 50 mW 

13 A 

10 – 200 kV 

400 – 800 nm 

You can estimate some quantities indirectly if you know how they are related 
to other quantities. For example, the height of a HDB block is the number of 

storeys  height of each storey which can be estimated more easily. The 

mass of water in a 1 m
3
 container = 10

6
 cm

3
  1 g cm

-3
 = 10

6
 g or 1000 kg. 

 

8  Scalars and Vectors 
 
 
 
 
 
 

Note that a vector cannot be specified with just a number, because a single 
number cannot tell us its direction. There are many ways to specify or 
describe a vector. Some examples are: 

1. Add a description to a number e.g. 5 N pointing North, 2 m s
-1

 with 

bearing 120, 6 m s
-1

 at an angle of 60 with respect to the horizontal. 
2. Draw an arrow whose length tells us the magnitude and the direction is 

as indicated by the arrow. 
3. If the vectors are all either pointing one way or directly opposite, then + 

and - sign can be used to indicate the two opposite directions. For 
example, if + 5 m displacement is to the right then - 5 m is to the left. 

Drawing accurate arrows on paper is a neat way to specify a vector. A well-
drawn scale diagram can help us find the result of addition or subtraction of 
vectors. If only a rough sketch is drawn, it is still very useful as it allows us to 
make use of trigonometric functions, sine rule and cosine rule and 
Pythogoras Theorem to calculate the result of addition or subtraction. 

 

 
 
The ability to 
remember 
typical values of 
common 
quantities is a 
useful first line of 
defence against 
calculation 
mistakes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A scalar only has 
magnitude while 
a vector has 
both magnitude 
and direction. 
 
 
 
 
 
There are many 
ways to specify 
the direction of a 
vector. 
In particular, 
vector diagrams 
are very useful. 
 
 
 
 
 
 
 

A scalar is a quantity which only has a magnitude but no direction 

 

A vector is a quantity which has a magnitude and a direction. 
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At ‘A’ level, there will be frequent encounters of vector subtraction because 
some common quantities are defined in terms of change of vectors. For 

example, acceleration is defined as rate of change of velocity 
t

v






. It is also 

very frequent that students wrongly subtract vectors by treating them as just 
magnitudes. Since the direction associated with vectors cannot be 
subtracted numerically, the correct way is to use a vector diagram to keep 
track of the subtraction of both magnitudes and directions. Vector subtraction 
is built upon the following two concepts: 

1. negative of a vector 
2. vector addition 

 

A ball approaches a slanted wall with a horizontal 
velocity of 30 m s

-1
. After hitting the wall, it rebounds 

with a velocity of 20 m s
-1

 in a direction at an angle of 

60 with the horizontal. Find it’s change in velocity.  

    
if
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      where

 definitionBy 
 

Using the vector diagram, the magnitude 

of v can be found using cosine rule: 
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To find  so that the direction of v


 can 
be specified, sine rule can be used: 

    






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120sin

20
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
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v


 

 change in velocity is 44 m s
-1

, at an angle of 23 with the horizontal. 
 

 

Resolution of a 2D vector R  refers to finding a 
pair of vectors which when added will produce 

the vector R


. In Physics, we are mostly 
interested in a perpendicular pair. Still there 
are an infinite number of perpendicular pairs 

that when added will give R


. For example, the 

force F


acting on a block on a slope can be 

resolved into components 1a


 & 2a


 or into the pair 1b


 & 2b


 or any other pair 

according to the purpose of resolution. 

The reason for choosing perpendicular components is that they are 
independent, which allows analysis and calculations to be done for a specific 
direction, involving only the components along that direction. An example is 

the force F


on the block above. The acceleration along the slope is only 

affected by the component 1b


 and not 2b


. 

The magnitude of a component is 
frequently needed in terms of the 
magnitude R of the original vector. The 
components’ magnitudes can be found 
using the definitions of sine and cosine. 

 

Remembering 
which quantities 
are vectors is 
very important 
because vector 
addition and 
subtraction is not 
the same as for 
scalars.  
 
Vector 
subtraction is 
built upon 
concept of  
1. negative of a 

vector & 
2. vector 

addition. 
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Components are 
frequently 
needed, so 
familiarity with 
resolution of a 
vector into 
perpendicular 
components is 
very important. 
 
The directions of 
the components 
are chosen 
based on the 
purpose of 
resolution. 
 
 
 
 
 
 
 

60 

 

 

 

 60 

 

120 20 m s
-1

 

30 m s
-1

 

 
 

  

 

 

 

 

 

R 
Rsin 

or  Rcos 
 

 

Rsin  or  Rcos 
 


